MakeItFrom.com
Menu (ESC)

EN 1.4104 Stainless Steel vs. EN AC-51500 Aluminum

EN 1.4104 stainless steel belongs to the iron alloys classification, while EN AC-51500 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4104 stainless steel and the bottom bar is EN AC-51500 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
68
Elongation at Break, % 11 to 23
5.6
Fatigue Strength, MPa 230 to 310
120
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
26
Tensile Strength: Ultimate (UTS), MPa 630 to 750
280
Tensile Strength: Yield (Proof), MPa 350 to 560
160

Thermal Properties

Latent Heat of Fusion, J/g 280
430
Maximum Temperature: Mechanical, °C 860
170
Melting Completion (Liquidus), °C 1440
630
Melting Onset (Solidus), °C 1390
590
Specific Heat Capacity, J/kg-K 480
910
Thermal Conductivity, W/m-K 25
120
Thermal Expansion, µm/m-K 10
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
26
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
88

Otherwise Unclassified Properties

Base Metal Price, % relative 8.5
9.5
Density, g/cm3 7.7
2.6
Embodied Carbon, kg CO2/kg material 2.2
9.0
Embodied Energy, MJ/kg 30
150
Embodied Water, L/kg 120
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 77 to 120
13
Resilience: Unit (Modulus of Resilience), kJ/m3 310 to 800
190
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
52
Strength to Weight: Axial, points 23 to 27
29
Strength to Weight: Bending, points 21 to 24
36
Thermal Diffusivity, mm2/s 6.7
49
Thermal Shock Resistance, points 22 to 27
13

Alloy Composition

Aluminum (Al), % 0
89.8 to 93.1
Carbon (C), % 0.1 to 0.17
0
Chromium (Cr), % 15.5 to 17.5
0
Copper (Cu), % 0
0 to 0.050
Iron (Fe), % 78.8 to 84.1
0 to 0.25
Magnesium (Mg), % 0
4.7 to 6.0
Manganese (Mn), % 0 to 1.5
0.4 to 0.8
Molybdenum (Mo), % 0.2 to 0.6
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
1.8 to 2.6
Sulfur (S), % 0.15 to 0.35
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 0.070
Residuals, % 0
0 to 0.15