MakeItFrom.com
Menu (ESC)

EN 1.4104 Stainless Steel vs. C19200 Copper

EN 1.4104 stainless steel belongs to the iron alloys classification, while C19200 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4104 stainless steel and the bottom bar is C19200 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 11 to 23
2.0 to 35
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
44
Shear Strength, MPa 400 to 450
190 to 300
Tensile Strength: Ultimate (UTS), MPa 630 to 750
280 to 530
Tensile Strength: Yield (Proof), MPa 350 to 560
98 to 510

Thermal Properties

Latent Heat of Fusion, J/g 280
210
Maximum Temperature: Mechanical, °C 860
200
Melting Completion (Liquidus), °C 1440
1080
Melting Onset (Solidus), °C 1390
1080
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 25
240
Thermal Expansion, µm/m-K 10
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
58 to 74
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
58 to 75

Otherwise Unclassified Properties

Base Metal Price, % relative 8.5
30
Density, g/cm3 7.7
8.9
Embodied Carbon, kg CO2/kg material 2.2
2.6
Embodied Energy, MJ/kg 30
41
Embodied Water, L/kg 120
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 77 to 120
10 to 98
Resilience: Unit (Modulus of Resilience), kJ/m3 310 to 800
42 to 1120
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 23 to 27
8.8 to 17
Strength to Weight: Bending, points 21 to 24
11 to 16
Thermal Diffusivity, mm2/s 6.7
69
Thermal Shock Resistance, points 22 to 27
10 to 19

Alloy Composition

Carbon (C), % 0.1 to 0.17
0
Chromium (Cr), % 15.5 to 17.5
0
Copper (Cu), % 0
98.5 to 99.19
Iron (Fe), % 78.8 to 84.1
0.8 to 1.2
Lead (Pb), % 0
0 to 0.030
Manganese (Mn), % 0 to 1.5
0
Molybdenum (Mo), % 0.2 to 0.6
0
Phosphorus (P), % 0 to 0.040
0.010 to 0.040
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0.15 to 0.35
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.2