MakeItFrom.com
Menu (ESC)

EN 1.4107 Stainless Steel vs. EN 1.4903 Stainless Steel

Both EN 1.4107 stainless steel and EN 1.4903 stainless steel are iron alloys. They have a very high 96% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.4107 stainless steel and the bottom bar is EN 1.4903 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 18 to 21
20 to 21
Fatigue Strength, MPa 260 to 350
320 to 330
Impact Strength: V-Notched Charpy, J 45 to 50
42 to 46
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
75
Tensile Strength: Ultimate (UTS), MPa 620 to 700
670 to 680
Tensile Strength: Yield (Proof), MPa 400 to 570
500

Thermal Properties

Latent Heat of Fusion, J/g 270
270
Maximum Temperature: Corrosion, °C 390
380
Maximum Temperature: Mechanical, °C 740
650
Melting Completion (Liquidus), °C 1450
1460
Melting Onset (Solidus), °C 1410
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 27
26
Thermal Expansion, µm/m-K 10
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
3.4
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
4.0

Otherwise Unclassified Properties

Base Metal Price, % relative 7.5
7.0
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 2.1
2.6
Embodied Energy, MJ/kg 30
36
Embodied Water, L/kg 100
88

Common Calculations

PREN (Pitting Resistance) 13
13
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 120
120 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 420 to 840
650
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 22 to 25
24
Strength to Weight: Bending, points 21 to 22
22
Thermal Diffusivity, mm2/s 7.2
7.0
Thermal Shock Resistance, points 22 to 25
23

Alloy Composition

Aluminum (Al), % 0
0 to 0.040
Carbon (C), % 0 to 0.1
0.080 to 0.12
Chromium (Cr), % 11.5 to 12.5
8.0 to 9.5
Copper (Cu), % 0 to 0.3
0 to 0.3
Iron (Fe), % 83.8 to 87.2
87.1 to 90.5
Manganese (Mn), % 0.5 to 0.8
0.3 to 0.6
Molybdenum (Mo), % 0 to 0.5
0.85 to 1.1
Nickel (Ni), % 0.8 to 1.5
0 to 0.4
Niobium (Nb), % 0
0.060 to 0.1
Nitrogen (N), % 0
0.030 to 0.070
Phosphorus (P), % 0 to 0.030
0 to 0.025
Silicon (Si), % 0 to 0.4
0 to 0.5
Sulfur (S), % 0 to 0.020
0 to 0.015
Vanadium (V), % 0 to 0.080
0.18 to 0.25