MakeItFrom.com
Menu (ESC)

EN 1.4107 Stainless Steel vs. CC497K Bronze

EN 1.4107 stainless steel belongs to the iron alloys classification, while CC497K bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4107 stainless steel and the bottom bar is CC497K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
93
Elongation at Break, % 18 to 21
6.7
Poisson's Ratio 0.28
0.36
Shear Modulus, GPa 76
34
Tensile Strength: Ultimate (UTS), MPa 620 to 700
190
Tensile Strength: Yield (Proof), MPa 400 to 570
91

Thermal Properties

Latent Heat of Fusion, J/g 270
160
Maximum Temperature: Mechanical, °C 740
130
Melting Completion (Liquidus), °C 1450
870
Melting Onset (Solidus), °C 1410
800
Specific Heat Capacity, J/kg-K 480
330
Thermal Conductivity, W/m-K 27
53
Thermal Expansion, µm/m-K 10
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 7.5
29
Density, g/cm3 7.8
9.3
Embodied Carbon, kg CO2/kg material 2.1
3.0
Embodied Energy, MJ/kg 30
48
Embodied Water, L/kg 100
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 120
10
Resilience: Unit (Modulus of Resilience), kJ/m3 420 to 840
45
Stiffness to Weight: Axial, points 14
5.5
Stiffness to Weight: Bending, points 25
16
Strength to Weight: Axial, points 22 to 25
5.6
Strength to Weight: Bending, points 21 to 22
7.8
Thermal Diffusivity, mm2/s 7.2
17
Thermal Shock Resistance, points 22 to 25
7.2

Alloy Composition

Aluminum (Al), % 0
0 to 0.010
Antimony (Sb), % 0
0 to 0.75
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 11.5 to 12.5
0
Copper (Cu), % 0 to 0.3
67.5 to 77.5
Iron (Fe), % 83.8 to 87.2
0 to 0.25
Lead (Pb), % 0
18 to 23
Manganese (Mn), % 0.5 to 0.8
0 to 0.2
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 0.8 to 1.5
0.5 to 2.5
Phosphorus (P), % 0 to 0.030
0 to 0.1
Silicon (Si), % 0 to 0.4
0 to 0.010
Sulfur (S), % 0 to 0.020
0 to 0.1
Tin (Sn), % 0
4.0 to 6.0
Vanadium (V), % 0 to 0.080
0
Zinc (Zn), % 0
0 to 2.0