MakeItFrom.com
Menu (ESC)

EN 1.4107 Stainless Steel vs. Grade 20 Titanium

EN 1.4107 stainless steel belongs to the iron alloys classification, while grade 20 titanium belongs to the titanium alloys. There are 24 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is EN 1.4107 stainless steel and the bottom bar is grade 20 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 18 to 21
5.7 to 17
Fatigue Strength, MPa 260 to 350
550 to 630
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 76
47
Tensile Strength: Ultimate (UTS), MPa 620 to 700
900 to 1270
Tensile Strength: Yield (Proof), MPa 400 to 570
850 to 1190

Thermal Properties

Latent Heat of Fusion, J/g 270
400
Maximum Temperature: Mechanical, °C 740
370
Melting Completion (Liquidus), °C 1450
1660
Melting Onset (Solidus), °C 1410
1600
Specific Heat Capacity, J/kg-K 480
520
Thermal Expansion, µm/m-K 10
9.6

Otherwise Unclassified Properties

Density, g/cm3 7.8
5.0
Embodied Carbon, kg CO2/kg material 2.1
52
Embodied Energy, MJ/kg 30
860
Embodied Water, L/kg 100
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 120
71 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 420 to 840
2940 to 5760
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
33
Strength to Weight: Axial, points 22 to 25
50 to 70
Strength to Weight: Bending, points 21 to 22
41 to 52
Thermal Shock Resistance, points 22 to 25
55 to 77

Alloy Composition

Aluminum (Al), % 0
3.0 to 4.0
Carbon (C), % 0 to 0.1
0 to 0.050
Chromium (Cr), % 11.5 to 12.5
5.5 to 6.5
Copper (Cu), % 0 to 0.3
0
Hydrogen (H), % 0
0 to 0.020
Iron (Fe), % 83.8 to 87.2
0 to 0.3
Manganese (Mn), % 0.5 to 0.8
0
Molybdenum (Mo), % 0 to 0.5
3.5 to 4.5
Nickel (Ni), % 0.8 to 1.5
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.12
Palladium (Pd), % 0
0.040 to 0.080
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.4
0
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0
71 to 77
Vanadium (V), % 0 to 0.080
7.5 to 8.5
Zirconium (Zr), % 0
3.5 to 4.5
Residuals, % 0
0 to 0.4

Comparable Variants