MakeItFrom.com
Menu (ESC)

EN 1.4107 Stainless Steel vs. Grade 6 Titanium

EN 1.4107 stainless steel belongs to the iron alloys classification, while grade 6 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4107 stainless steel and the bottom bar is grade 6 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 18 to 21
11
Fatigue Strength, MPa 260 to 350
290
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 76
39
Tensile Strength: Ultimate (UTS), MPa 620 to 700
890
Tensile Strength: Yield (Proof), MPa 400 to 570
840

Thermal Properties

Latent Heat of Fusion, J/g 270
410
Maximum Temperature: Mechanical, °C 740
310
Melting Completion (Liquidus), °C 1450
1580
Melting Onset (Solidus), °C 1410
1530
Specific Heat Capacity, J/kg-K 480
550
Thermal Conductivity, W/m-K 27
7.8
Thermal Expansion, µm/m-K 10
9.4

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
1.2
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 7.5
36
Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 2.1
30
Embodied Energy, MJ/kg 30
480
Embodied Water, L/kg 100
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 120
92
Resilience: Unit (Modulus of Resilience), kJ/m3 420 to 840
3390
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 22 to 25
55
Strength to Weight: Bending, points 21 to 22
46
Thermal Diffusivity, mm2/s 7.2
3.2
Thermal Shock Resistance, points 22 to 25
65

Alloy Composition

Aluminum (Al), % 0
4.0 to 6.0
Carbon (C), % 0 to 0.1
0 to 0.080
Chromium (Cr), % 11.5 to 12.5
0
Copper (Cu), % 0 to 0.3
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 83.8 to 87.2
0 to 0.5
Manganese (Mn), % 0.5 to 0.8
0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 0.8 to 1.5
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.2
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.4
0
Sulfur (S), % 0 to 0.020
0
Tin (Sn), % 0
2.0 to 3.0
Titanium (Ti), % 0
89.8 to 94
Vanadium (V), % 0 to 0.080
0
Residuals, % 0
0 to 0.4