MakeItFrom.com
Menu (ESC)

EN 1.4107 Stainless Steel vs. C10100 Copper

EN 1.4107 stainless steel belongs to the iron alloys classification, while C10100 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is EN 1.4107 stainless steel and the bottom bar is C10100 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 18 to 21
1.5 to 50
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
43
Tensile Strength: Ultimate (UTS), MPa 620 to 700
220 to 410
Tensile Strength: Yield (Proof), MPa 400 to 570
69 to 400

Thermal Properties

Latent Heat of Fusion, J/g 270
210
Maximum Temperature: Mechanical, °C 740
200
Melting Completion (Liquidus), °C 1450
1080
Melting Onset (Solidus), °C 1410
1080
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 27
390
Thermal Expansion, µm/m-K 10
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
100
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
100

Otherwise Unclassified Properties

Base Metal Price, % relative 7.5
31
Density, g/cm3 7.8
9.0
Embodied Carbon, kg CO2/kg material 2.1
2.6
Embodied Energy, MJ/kg 30
41
Embodied Water, L/kg 100
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 120
6.1 to 85
Resilience: Unit (Modulus of Resilience), kJ/m3 420 to 840
21 to 690
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 22 to 25
6.8 to 13
Strength to Weight: Bending, points 21 to 22
9.0 to 14
Thermal Diffusivity, mm2/s 7.2
110
Thermal Shock Resistance, points 22 to 25
7.8 to 15

Alloy Composition

Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 11.5 to 12.5
0
Copper (Cu), % 0 to 0.3
99.99 to 100
Iron (Fe), % 83.8 to 87.2
0
Lead (Pb), % 0
0 to 0.0010
Manganese (Mn), % 0.5 to 0.8
0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 0.8 to 1.5
0
Oxygen (O), % 0
0 to 0.00050
Phosphorus (P), % 0 to 0.030
0 to 0.00030
Silicon (Si), % 0 to 0.4
0
Sulfur (S), % 0 to 0.020
0
Vanadium (V), % 0 to 0.080
0
Zinc (Zn), % 0
0 to 0.00010

Comparable Variants