MakeItFrom.com
Menu (ESC)

EN 1.4107 Stainless Steel vs. C17510 Copper

EN 1.4107 stainless steel belongs to the iron alloys classification, while C17510 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.4107 stainless steel and the bottom bar is C17510 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 18 to 21
5.4 to 37
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
44
Tensile Strength: Ultimate (UTS), MPa 620 to 700
310 to 860
Tensile Strength: Yield (Proof), MPa 400 to 570
120 to 750

Thermal Properties

Latent Heat of Fusion, J/g 270
220
Maximum Temperature: Mechanical, °C 740
220
Melting Completion (Liquidus), °C 1450
1070
Melting Onset (Solidus), °C 1410
1030
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 27
210
Thermal Expansion, µm/m-K 10
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
22 to 54
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
23 to 54

Otherwise Unclassified Properties

Base Metal Price, % relative 7.5
49
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 2.1
4.2
Embodied Energy, MJ/kg 30
65
Embodied Water, L/kg 100
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 120
39 to 92
Resilience: Unit (Modulus of Resilience), kJ/m3 420 to 840
64 to 2410
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 22 to 25
9.7 to 27
Strength to Weight: Bending, points 21 to 22
11 to 23
Thermal Diffusivity, mm2/s 7.2
60
Thermal Shock Resistance, points 22 to 25
11 to 30

Alloy Composition

Aluminum (Al), % 0
0 to 0.2
Beryllium (Be), % 0
0.2 to 0.6
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 11.5 to 12.5
0
Cobalt (Co), % 0
0 to 0.3
Copper (Cu), % 0 to 0.3
95.9 to 98.4
Iron (Fe), % 83.8 to 87.2
0 to 0.1
Manganese (Mn), % 0.5 to 0.8
0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 0.8 to 1.5
1.4 to 2.2
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.4
0 to 0.2
Sulfur (S), % 0 to 0.020
0
Vanadium (V), % 0 to 0.080
0
Residuals, % 0
0 to 0.5

Comparable Variants