EN 1.4107 Stainless Steel vs. R04295 Alloy
EN 1.4107 stainless steel belongs to the iron alloys classification, while R04295 alloy belongs to the otherwise unclassified metals. There are 18 material properties with values for both materials. Properties with values for just one material (14, in this case) are not shown.
For each property being compared, the top bar is EN 1.4107 stainless steel and the bottom bar is R04295 alloy.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 190 | |
100 |
Elongation at Break, % | 18 to 21 | |
22 |
Poisson's Ratio | 0.28 | |
0.38 |
Shear Modulus, GPa | 76 | |
37 |
Tensile Strength: Ultimate (UTS), MPa | 620 to 700 | |
410 |
Tensile Strength: Yield (Proof), MPa | 400 to 570 | |
300 |
Thermal Properties
Latent Heat of Fusion, J/g | 270 | |
300 |
Specific Heat Capacity, J/kg-K | 480 | |
260 |
Thermal Expansion, µm/m-K | 10 | |
7.2 |
Otherwise Unclassified Properties
Density, g/cm3 | 7.8 | |
9.0 |
Embodied Water, L/kg | 100 | |
950 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 110 to 120 | |
84 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 420 to 840 | |
430 |
Stiffness to Weight: Axial, points | 14 | |
6.3 |
Stiffness to Weight: Bending, points | 25 | |
17 |
Strength to Weight: Axial, points | 22 to 25 | |
13 |
Strength to Weight: Bending, points | 21 to 22 | |
14 |
Thermal Shock Resistance, points | 22 to 25 | |
40 |
Alloy Composition
Carbon (C), % | 0 to 0.1 | |
0 to 0.015 |
Chromium (Cr), % | 11.5 to 12.5 | |
0 |
Copper (Cu), % | 0 to 0.3 | |
0 |
Hafnium (Hf), % | 0 | |
9.0 to 11 |
Hydrogen (H), % | 0 | |
0 to 0.0015 |
Iron (Fe), % | 83.8 to 87.2 | |
0 |
Manganese (Mn), % | 0.5 to 0.8 | |
0 |
Molybdenum (Mo), % | 0 to 0.5 | |
0 |
Nickel (Ni), % | 0.8 to 1.5 | |
0 |
Niobium (Nb), % | 0 | |
85.9 to 90.3 |
Nitrogen (N), % | 0 | |
0 to 0.010 |
Oxygen (O), % | 0 | |
0 to 0.025 |
Phosphorus (P), % | 0 to 0.030 | |
0 |
Silicon (Si), % | 0 to 0.4 | |
0 |
Sulfur (S), % | 0 to 0.020 | |
0 |
Tantalum (Ta), % | 0 | |
0 to 0.5 |
Titanium (Ti), % | 0 | |
0.7 to 1.3 |
Tungsten (W), % | 0 | |
0 to 0.5 |
Vanadium (V), % | 0 to 0.080 | |
0 |
Zirconium (Zr), % | 0 | |
0 to 0.7 |