MakeItFrom.com
Menu (ESC)

EN 1.4109 Stainless Steel vs. AISI 430 Stainless Steel

Both EN 1.4109 stainless steel and AISI 430 stainless steel are iron alloys. Both are furnished in the annealed condition. They have a very high 97% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.4109 stainless steel and the bottom bar is AISI 430 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 250
160
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 19
24
Fatigue Strength, MPa 270
180
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
77
Shear Strength, MPa 480
320
Tensile Strength: Ultimate (UTS), MPa 770
500
Tensile Strength: Yield (Proof), MPa 420
260

Thermal Properties

Latent Heat of Fusion, J/g 280
280
Maximum Temperature: Corrosion, °C 390
410
Maximum Temperature: Mechanical, °C 820
870
Melting Completion (Liquidus), °C 1440
1510
Melting Onset (Solidus), °C 1400
1430
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 30
25
Thermal Expansion, µm/m-K 10
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.7
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 3.1
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 8.5
8.5
Density, g/cm3 7.7
7.7
Embodied Carbon, kg CO2/kg material 2.2
2.1
Embodied Energy, MJ/kg 30
30
Embodied Water, L/kg 110
120

Common Calculations

PREN (Pitting Resistance) 17
17
Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
100
Resilience: Unit (Modulus of Resilience), kJ/m3 460
170
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 28
18
Strength to Weight: Bending, points 24
18
Thermal Diffusivity, mm2/s 8.1
6.7
Thermal Shock Resistance, points 28
18

Alloy Composition

Carbon (C), % 0.6 to 0.75
0 to 0.12
Chromium (Cr), % 14 to 16
16 to 18
Iron (Fe), % 80.7 to 85
79.1 to 84
Manganese (Mn), % 0 to 1.0
0 to 1.0
Molybdenum (Mo), % 0.4 to 0.8
0
Nickel (Ni), % 0
0 to 0.75
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 0.7
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.030