MakeItFrom.com
Menu (ESC)

EN 1.4110 Stainless Steel vs. EN 1.5450 Steel

Both EN 1.4110 stainless steel and EN 1.5450 steel are iron alloys. They have 85% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4110 stainless steel and the bottom bar is EN 1.5450 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 11 to 14
19
Fatigue Strength, MPa 250 to 730
310
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
73
Shear Strength, MPa 470 to 1030
380
Tensile Strength: Ultimate (UTS), MPa 770 to 1720
620
Tensile Strength: Yield (Proof), MPa 430 to 1330
460

Thermal Properties

Latent Heat of Fusion, J/g 280
250
Maximum Temperature: Mechanical, °C 790
410
Melting Completion (Liquidus), °C 1440
1470
Melting Onset (Solidus), °C 1400
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 30
49
Thermal Expansion, µm/m-K 11
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.8
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 3.2
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 8.0
2.4
Density, g/cm3 7.7
7.9
Embodied Carbon, kg CO2/kg material 2.3
1.5
Embodied Energy, MJ/kg 33
20
Embodied Water, L/kg 110
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 90 to 180
110
Resilience: Unit (Modulus of Resilience), kJ/m3 480 to 4550
550
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 28 to 62
22
Strength to Weight: Bending, points 24 to 41
20
Thermal Diffusivity, mm2/s 8.1
13
Thermal Shock Resistance, points 27 to 60
18

Alloy Composition

Aluminum (Al), % 0
0 to 0.060
Boron (B), % 0
0.0020 to 0.0060
Carbon (C), % 0.48 to 0.6
0.060 to 0.1
Chromium (Cr), % 13 to 15
0 to 0.2
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 81.4 to 86
97.6 to 98.8
Manganese (Mn), % 0 to 1.0
0.6 to 0.8
Molybdenum (Mo), % 0.5 to 0.8
0.4 to 0.5
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0 to 1.0
0.1 to 0.35
Sulfur (S), % 0 to 0.015
0 to 0.010
Titanium (Ti), % 0
0 to 0.060
Vanadium (V), % 0 to 0.15
0