MakeItFrom.com
Menu (ESC)

EN 1.4110 Stainless Steel vs. EN AC-43300 Aluminum

EN 1.4110 stainless steel belongs to the iron alloys classification, while EN AC-43300 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4110 stainless steel and the bottom bar is EN AC-43300 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
71
Elongation at Break, % 11 to 14
3.4 to 6.7
Fatigue Strength, MPa 250 to 730
76 to 77
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
27
Tensile Strength: Ultimate (UTS), MPa 770 to 1720
280 to 290
Tensile Strength: Yield (Proof), MPa 430 to 1330
210 to 230

Thermal Properties

Latent Heat of Fusion, J/g 280
540
Maximum Temperature: Mechanical, °C 790
170
Melting Completion (Liquidus), °C 1440
600
Melting Onset (Solidus), °C 1400
590
Specific Heat Capacity, J/kg-K 480
910
Thermal Conductivity, W/m-K 30
140
Thermal Expansion, µm/m-K 11
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.8
40
Electrical Conductivity: Equal Weight (Specific), % IACS 3.2
140

Otherwise Unclassified Properties

Base Metal Price, % relative 8.0
9.5
Density, g/cm3 7.7
2.5
Embodied Carbon, kg CO2/kg material 2.3
7.9
Embodied Energy, MJ/kg 33
150
Embodied Water, L/kg 110
1080

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 90 to 180
9.1 to 17
Resilience: Unit (Modulus of Resilience), kJ/m3 480 to 4550
300 to 370
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
54
Strength to Weight: Axial, points 28 to 62
31 to 32
Strength to Weight: Bending, points 24 to 41
37 to 38
Thermal Diffusivity, mm2/s 8.1
59
Thermal Shock Resistance, points 27 to 60
13 to 14

Alloy Composition

Aluminum (Al), % 0
88.9 to 90.8
Carbon (C), % 0.48 to 0.6
0
Chromium (Cr), % 13 to 15
0
Copper (Cu), % 0
0 to 0.050
Iron (Fe), % 81.4 to 86
0 to 0.19
Magnesium (Mg), % 0
0.25 to 0.45
Manganese (Mn), % 0 to 1.0
0 to 0.1
Molybdenum (Mo), % 0.5 to 0.8
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
9.0 to 10
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
0 to 0.15
Vanadium (V), % 0 to 0.15
0
Zinc (Zn), % 0
0 to 0.070
Residuals, % 0
0 to 0.1