MakeItFrom.com
Menu (ESC)

EN 1.4110 Stainless Steel vs. Grade C-5 Titanium

EN 1.4110 stainless steel belongs to the iron alloys classification, while grade C-5 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4110 stainless steel and the bottom bar is grade C-5 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 11 to 14
6.7
Fatigue Strength, MPa 250 to 730
510
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 76
40
Tensile Strength: Ultimate (UTS), MPa 770 to 1720
1000
Tensile Strength: Yield (Proof), MPa 430 to 1330
940

Thermal Properties

Latent Heat of Fusion, J/g 280
410
Maximum Temperature: Mechanical, °C 790
340
Melting Completion (Liquidus), °C 1440
1610
Melting Onset (Solidus), °C 1400
1560
Specific Heat Capacity, J/kg-K 480
560
Thermal Conductivity, W/m-K 30
7.1
Thermal Expansion, µm/m-K 11
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.8
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 3.2
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 8.0
36
Density, g/cm3 7.7
4.4
Embodied Carbon, kg CO2/kg material 2.3
38
Embodied Energy, MJ/kg 33
610
Embodied Water, L/kg 110
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 90 to 180
66
Resilience: Unit (Modulus of Resilience), kJ/m3 480 to 4550
4200
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 28 to 62
63
Strength to Weight: Bending, points 24 to 41
50
Thermal Diffusivity, mm2/s 8.1
2.9
Thermal Shock Resistance, points 27 to 60
71

Alloy Composition

Aluminum (Al), % 0
5.5 to 6.8
Carbon (C), % 0.48 to 0.6
0 to 0.1
Chromium (Cr), % 13 to 15
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 81.4 to 86
0 to 0.4
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 0.5 to 0.8
0
Nickel (Ni), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.25
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
87.5 to 91
Vanadium (V), % 0 to 0.15
3.5 to 4.5
Residuals, % 0
0 to 0.4