MakeItFrom.com
Menu (ESC)

EN 1.4110 Stainless Steel vs. Grade Ti-Pd8A Titanium

EN 1.4110 stainless steel belongs to the iron alloys classification, while grade Ti-Pd8A titanium belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.4110 stainless steel and the bottom bar is grade Ti-Pd8A titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 11 to 14
13
Fatigue Strength, MPa 250 to 730
260
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 76
40
Tensile Strength: Ultimate (UTS), MPa 770 to 1720
500
Tensile Strength: Yield (Proof), MPa 430 to 1330
430

Thermal Properties

Latent Heat of Fusion, J/g 280
420
Maximum Temperature: Mechanical, °C 790
320
Melting Completion (Liquidus), °C 1440
1660
Melting Onset (Solidus), °C 1400
1610
Specific Heat Capacity, J/kg-K 480
540
Thermal Conductivity, W/m-K 30
21
Thermal Expansion, µm/m-K 11
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.8
3.5
Electrical Conductivity: Equal Weight (Specific), % IACS 3.2
6.9

Otherwise Unclassified Properties

Density, g/cm3 7.7
4.5
Embodied Carbon, kg CO2/kg material 2.3
49
Embodied Energy, MJ/kg 33
840
Embodied Water, L/kg 110
520

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 90 to 180
65
Resilience: Unit (Modulus of Resilience), kJ/m3 480 to 4550
880
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 28 to 62
31
Strength to Weight: Bending, points 24 to 41
31
Thermal Diffusivity, mm2/s 8.1
8.6
Thermal Shock Resistance, points 27 to 60
39

Alloy Composition

Carbon (C), % 0.48 to 0.6
0 to 0.1
Chromium (Cr), % 13 to 15
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 81.4 to 86
0 to 0.25
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 0.5 to 0.8
0
Nickel (Ni), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.4
Palladium (Pd), % 0
0.12 to 0.3
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
98.8 to 99.9
Vanadium (V), % 0 to 0.15
0
Residuals, % 0
0 to 0.4