MakeItFrom.com
Menu (ESC)

EN 1.4110 Stainless Steel vs. C64700 Bronze

EN 1.4110 stainless steel belongs to the iron alloys classification, while C64700 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.4110 stainless steel and the bottom bar is C64700 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 11 to 14
9.0
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
44
Shear Strength, MPa 470 to 1030
390
Tensile Strength: Ultimate (UTS), MPa 770 to 1720
660
Tensile Strength: Yield (Proof), MPa 430 to 1330
560

Thermal Properties

Latent Heat of Fusion, J/g 280
220
Maximum Temperature: Mechanical, °C 790
200
Melting Completion (Liquidus), °C 1440
1090
Melting Onset (Solidus), °C 1400
1030
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 30
210
Thermal Expansion, µm/m-K 11
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.8
38
Electrical Conductivity: Equal Weight (Specific), % IACS 3.2
38

Otherwise Unclassified Properties

Base Metal Price, % relative 8.0
31
Density, g/cm3 7.7
8.9
Embodied Carbon, kg CO2/kg material 2.3
2.7
Embodied Energy, MJ/kg 33
43
Embodied Water, L/kg 110
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 90 to 180
57
Resilience: Unit (Modulus of Resilience), kJ/m3 480 to 4550
1370
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 28 to 62
21
Strength to Weight: Bending, points 24 to 41
19
Thermal Diffusivity, mm2/s 8.1
59
Thermal Shock Resistance, points 27 to 60
24

Alloy Composition

Carbon (C), % 0.48 to 0.6
0
Chromium (Cr), % 13 to 15
0
Copper (Cu), % 0
95.8 to 98
Iron (Fe), % 81.4 to 86
0 to 0.1
Lead (Pb), % 0
0 to 0.1
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 0.5 to 0.8
0
Nickel (Ni), % 0
1.6 to 2.2
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0.4 to 0.8
Sulfur (S), % 0 to 0.015
0
Vanadium (V), % 0 to 0.15
0
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.5