MakeItFrom.com
Menu (ESC)

EN 1.4110 Stainless Steel vs. C72800 Copper-nickel

EN 1.4110 stainless steel belongs to the iron alloys classification, while C72800 copper-nickel belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4110 stainless steel and the bottom bar is C72800 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 11 to 14
3.9 to 23
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
44
Shear Strength, MPa 470 to 1030
330 to 740
Tensile Strength: Ultimate (UTS), MPa 770 to 1720
520 to 1270
Tensile Strength: Yield (Proof), MPa 430 to 1330
250 to 1210

Thermal Properties

Latent Heat of Fusion, J/g 280
210
Maximum Temperature: Mechanical, °C 790
200
Melting Completion (Liquidus), °C 1440
1080
Melting Onset (Solidus), °C 1400
920
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 30
55
Thermal Expansion, µm/m-K 11
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.8
11
Electrical Conductivity: Equal Weight (Specific), % IACS 3.2
11

Otherwise Unclassified Properties

Base Metal Price, % relative 8.0
38
Density, g/cm3 7.7
8.8
Embodied Carbon, kg CO2/kg material 2.3
4.4
Embodied Energy, MJ/kg 33
68
Embodied Water, L/kg 110
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 90 to 180
37 to 99
Resilience: Unit (Modulus of Resilience), kJ/m3 480 to 4550
260 to 5650
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 28 to 62
17 to 40
Strength to Weight: Bending, points 24 to 41
16 to 30
Thermal Diffusivity, mm2/s 8.1
17
Thermal Shock Resistance, points 27 to 60
19 to 45

Alloy Composition

Aluminum (Al), % 0
0 to 0.1
Antimony (Sb), % 0
0 to 0.020
Bismuth (Bi), % 0
0 to 0.0010
Boron (B), % 0
0 to 0.0010
Carbon (C), % 0.48 to 0.6
0
Chromium (Cr), % 13 to 15
0
Copper (Cu), % 0
78.3 to 82.8
Iron (Fe), % 81.4 to 86
0 to 0.5
Lead (Pb), % 0
0 to 0.0050
Magnesium (Mg), % 0
0.0050 to 0.15
Manganese (Mn), % 0 to 1.0
0.050 to 0.3
Molybdenum (Mo), % 0.5 to 0.8
0
Nickel (Ni), % 0
9.5 to 10.5
Niobium (Nb), % 0
0.1 to 0.3
Phosphorus (P), % 0 to 0.040
0 to 0.0050
Silicon (Si), % 0 to 1.0
0 to 0.050
Sulfur (S), % 0 to 0.015
0 to 0.0025
Tin (Sn), % 0
7.5 to 8.5
Titanium (Ti), % 0
0 to 0.010
Vanadium (V), % 0 to 0.15
0
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.3