MakeItFrom.com
Menu (ESC)

EN 1.4110 Stainless Steel vs. C85400 Brass

EN 1.4110 stainless steel belongs to the iron alloys classification, while C85400 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4110 stainless steel and the bottom bar is C85400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 11 to 14
23
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 76
40
Tensile Strength: Ultimate (UTS), MPa 770 to 1720
220
Tensile Strength: Yield (Proof), MPa 430 to 1330
85

Thermal Properties

Latent Heat of Fusion, J/g 280
180
Maximum Temperature: Mechanical, °C 790
130
Melting Completion (Liquidus), °C 1440
940
Melting Onset (Solidus), °C 1400
940
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 30
89
Thermal Expansion, µm/m-K 11
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.8
20
Electrical Conductivity: Equal Weight (Specific), % IACS 3.2
22

Otherwise Unclassified Properties

Base Metal Price, % relative 8.0
25
Density, g/cm3 7.7
8.3
Embodied Carbon, kg CO2/kg material 2.3
2.8
Embodied Energy, MJ/kg 33
46
Embodied Water, L/kg 110
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 90 to 180
40
Resilience: Unit (Modulus of Resilience), kJ/m3 480 to 4550
35
Stiffness to Weight: Axial, points 14
7.0
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 28 to 62
7.5
Strength to Weight: Bending, points 24 to 41
9.9
Thermal Diffusivity, mm2/s 8.1
28
Thermal Shock Resistance, points 27 to 60
7.6

Alloy Composition

Aluminum (Al), % 0
0 to 0.35
Carbon (C), % 0.48 to 0.6
0
Chromium (Cr), % 13 to 15
0
Copper (Cu), % 0
65 to 70
Iron (Fe), % 81.4 to 86
0 to 0.7
Lead (Pb), % 0
1.5 to 3.8
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 0.5 to 0.8
0
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.050
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0.5 to 1.5
Vanadium (V), % 0 to 0.15
0
Zinc (Zn), % 0
24 to 32
Residuals, % 0
0 to 1.1