MakeItFrom.com
Menu (ESC)

EN 1.4110 Stainless Steel vs. C95800 Bronze

EN 1.4110 stainless steel belongs to the iron alloys classification, while C95800 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4110 stainless steel and the bottom bar is C95800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 11 to 14
22
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
44
Tensile Strength: Ultimate (UTS), MPa 770 to 1720
660
Tensile Strength: Yield (Proof), MPa 430 to 1330
270

Thermal Properties

Latent Heat of Fusion, J/g 280
230
Maximum Temperature: Mechanical, °C 790
230
Melting Completion (Liquidus), °C 1440
1060
Melting Onset (Solidus), °C 1400
1040
Specific Heat Capacity, J/kg-K 480
440
Thermal Conductivity, W/m-K 30
36
Thermal Expansion, µm/m-K 11
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.8
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 3.2
7.6

Otherwise Unclassified Properties

Base Metal Price, % relative 8.0
29
Density, g/cm3 7.7
8.3
Embodied Carbon, kg CO2/kg material 2.3
3.4
Embodied Energy, MJ/kg 33
55
Embodied Water, L/kg 110
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 90 to 180
110
Resilience: Unit (Modulus of Resilience), kJ/m3 480 to 4550
310
Stiffness to Weight: Axial, points 14
7.9
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 28 to 62
22
Strength to Weight: Bending, points 24 to 41
20
Thermal Diffusivity, mm2/s 8.1
9.9
Thermal Shock Resistance, points 27 to 60
23

Alloy Composition

Aluminum (Al), % 0
8.5 to 9.5
Carbon (C), % 0.48 to 0.6
0
Chromium (Cr), % 13 to 15
0
Copper (Cu), % 0
79 to 83.2
Iron (Fe), % 81.4 to 86
3.5 to 4.5
Lead (Pb), % 0
0 to 0.030
Manganese (Mn), % 0 to 1.0
0.8 to 1.5
Molybdenum (Mo), % 0.5 to 0.8
0
Nickel (Ni), % 0
4.0 to 5.0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.1
Sulfur (S), % 0 to 0.015
0
Vanadium (V), % 0 to 0.15
0
Residuals, % 0
0 to 0.5