MakeItFrom.com
Menu (ESC)

EN 1.4112 Stainless Steel vs. S20433 Stainless Steel

Both EN 1.4112 stainless steel and S20433 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 87% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.4112 stainless steel and the bottom bar is S20433 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 230
190
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 20
46
Fatigue Strength, MPa 280
250
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
76
Shear Strength, MPa 470
440
Tensile Strength: Ultimate (UTS), MPa 750
630
Tensile Strength: Yield (Proof), MPa 430
270

Thermal Properties

Latent Heat of Fusion, J/g 280
280
Maximum Temperature: Corrosion, °C 400
410
Maximum Temperature: Mechanical, °C 910
900
Melting Completion (Liquidus), °C 1430
1400
Melting Onset (Solidus), °C 1390
1360
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 15
15
Thermal Expansion, µm/m-K 10
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 10
13
Density, g/cm3 7.7
7.7
Embodied Carbon, kg CO2/kg material 2.6
2.7
Embodied Energy, MJ/kg 37
39
Embodied Water, L/kg 130
150

Common Calculations

PREN (Pitting Resistance) 22
20
Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
230
Resilience: Unit (Modulus of Resilience), kJ/m3 480
180
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 27
23
Strength to Weight: Bending, points 24
21
Thermal Diffusivity, mm2/s 4.1
4.0
Thermal Shock Resistance, points 26
14

Alloy Composition

Carbon (C), % 0.85 to 1.0
0 to 0.080
Chromium (Cr), % 17 to 19
17 to 18
Copper (Cu), % 0
1.5 to 3.5
Iron (Fe), % 76.6 to 81.2
64.1 to 72.4
Manganese (Mn), % 0 to 1.0
5.5 to 7.5
Molybdenum (Mo), % 0.9 to 1.3
0
Nickel (Ni), % 0
3.5 to 5.5
Nitrogen (N), % 0
0.1 to 0.25
Phosphorus (P), % 0 to 0.040
0 to 0.045
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.030
Vanadium (V), % 0.070 to 0.12
0