MakeItFrom.com
Menu (ESC)

EN 1.4116 Stainless Steel vs. C48600 Brass

EN 1.4116 stainless steel belongs to the iron alloys classification, while C48600 brass belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4116 stainless steel and the bottom bar is C48600 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 14
20 to 25
Poisson's Ratio 0.28
0.31
Rockwell B Hardness 88
55 to 58
Shear Modulus, GPa 76
39
Shear Strength, MPa 450
180 to 230
Tensile Strength: Ultimate (UTS), MPa 750
280 to 360
Tensile Strength: Yield (Proof), MPa 430
110 to 170

Thermal Properties

Latent Heat of Fusion, J/g 280
170
Maximum Temperature: Mechanical, °C 800
120
Melting Completion (Liquidus), °C 1440
900
Melting Onset (Solidus), °C 1400
890
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 30
110
Thermal Expansion, µm/m-K 11
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.7
25
Electrical Conductivity: Equal Weight (Specific), % IACS 3.1
28

Otherwise Unclassified Properties

Base Metal Price, % relative 8.0
24
Density, g/cm3 7.7
8.1
Embodied Carbon, kg CO2/kg material 2.5
2.8
Embodied Energy, MJ/kg 36
47
Embodied Water, L/kg 110
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 87
55 to 59
Resilience: Unit (Modulus of Resilience), kJ/m3 470
61 to 140
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 27
9.5 to 12
Strength to Weight: Bending, points 24
12 to 14
Thermal Diffusivity, mm2/s 8.1
36
Thermal Shock Resistance, points 26
9.3 to 12

Alloy Composition

Arsenic (As), % 0
0.020 to 0.25
Carbon (C), % 0.45 to 0.55
0
Chromium (Cr), % 14 to 15
0
Copper (Cu), % 0
59 to 62
Iron (Fe), % 81.3 to 85
0
Lead (Pb), % 0
1.0 to 2.5
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 0.5 to 0.8
0
Nitrogen (N), % 0 to 0.15
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0.3 to 1.5
Vanadium (V), % 0.1 to 0.2
0
Zinc (Zn), % 0
33.4 to 39.7
Residuals, % 0
0 to 0.4