MakeItFrom.com
Menu (ESC)

EN 1.4116 Stainless Steel vs. S35125 Stainless Steel

Both EN 1.4116 stainless steel and S35125 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 57% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.4116 stainless steel and the bottom bar is S35125 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 14
39
Fatigue Strength, MPa 240
200
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
78
Shear Strength, MPa 450
370
Tensile Strength: Ultimate (UTS), MPa 750
540
Tensile Strength: Yield (Proof), MPa 430
230

Thermal Properties

Latent Heat of Fusion, J/g 280
300
Maximum Temperature: Corrosion, °C 390
490
Maximum Temperature: Mechanical, °C 800
1100
Melting Completion (Liquidus), °C 1440
1430
Melting Onset (Solidus), °C 1400
1380
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 30
12
Thermal Expansion, µm/m-K 11
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.7
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 3.1
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 8.0
36
Density, g/cm3 7.7
8.1
Embodied Carbon, kg CO2/kg material 2.5
6.4
Embodied Energy, MJ/kg 36
89
Embodied Water, L/kg 110
210

Common Calculations

PREN (Pitting Resistance) 18
30
Resilience: Ultimate (Unit Rupture Work), MJ/m3 87
170
Resilience: Unit (Modulus of Resilience), kJ/m3 470
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 27
19
Strength to Weight: Bending, points 24
18
Thermal Diffusivity, mm2/s 8.1
3.1
Thermal Shock Resistance, points 26
12

Alloy Composition

Carbon (C), % 0.45 to 0.55
0 to 0.1
Chromium (Cr), % 14 to 15
20 to 23
Iron (Fe), % 81.3 to 85
36.2 to 45.8
Manganese (Mn), % 0 to 1.0
1.0 to 1.5
Molybdenum (Mo), % 0.5 to 0.8
2.0 to 3.0
Nickel (Ni), % 0
31 to 35
Niobium (Nb), % 0
0.25 to 0.6
Nitrogen (N), % 0 to 0.15
0
Phosphorus (P), % 0 to 0.040
0 to 0.045
Silicon (Si), % 0 to 1.0
0 to 0.5
Sulfur (S), % 0 to 0.015
0 to 0.015
Vanadium (V), % 0.1 to 0.2
0