MakeItFrom.com
Menu (ESC)

EN 1.4122 Stainless Steel vs. 5010 Aluminum

EN 1.4122 stainless steel belongs to the iron alloys classification, while 5010 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4122 stainless steel and the bottom bar is 5010 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
69
Elongation at Break, % 14
1.1 to 23
Fatigue Strength, MPa 260 to 360
35 to 83
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
26
Shear Strength, MPa 480 to 520
64 to 120
Tensile Strength: Ultimate (UTS), MPa 790 to 850
100 to 210
Tensile Strength: Yield (Proof), MPa 450 to 630
38 to 190

Thermal Properties

Latent Heat of Fusion, J/g 280
400
Maximum Temperature: Mechanical, °C 870
180
Melting Completion (Liquidus), °C 1440
650
Melting Onset (Solidus), °C 1400
630
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 15
200
Thermal Expansion, µm/m-K 10
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
45
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
150

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 7.7
2.7
Embodied Carbon, kg CO2/kg material 2.4
8.2
Embodied Energy, MJ/kg 33
150
Embodied Water, L/kg 120
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 93 to 110
2.3 to 20
Resilience: Unit (Modulus of Resilience), kJ/m3 520 to 1000
10 to 270
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 28 to 31
10 to 22
Strength to Weight: Bending, points 25 to 26
18 to 29
Thermal Diffusivity, mm2/s 4.0
82
Thermal Shock Resistance, points 28 to 30
4.5 to 9.4

Alloy Composition

Aluminum (Al), % 0
97.1 to 99.7
Carbon (C), % 0.33 to 0.45
0
Chromium (Cr), % 15.5 to 17.5
0 to 0.15
Copper (Cu), % 0
0 to 0.25
Iron (Fe), % 77.2 to 83.4
0 to 0.7
Magnesium (Mg), % 0
0.2 to 0.6
Manganese (Mn), % 0 to 1.5
0.1 to 0.3
Molybdenum (Mo), % 0.8 to 1.3
0
Nickel (Ni), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.4
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.3
Residuals, % 0
0 to 0.15

Comparable Variants