MakeItFrom.com
Menu (ESC)

EN 1.4122 Stainless Steel vs. EN 1.8902 Steel

Both EN 1.4122 stainless steel and EN 1.8902 steel are iron alloys. They have 82% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4122 stainless steel and the bottom bar is EN 1.8902 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 14
21
Fatigue Strength, MPa 260 to 360
290
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
73
Shear Strength, MPa 480 to 520
380
Tensile Strength: Ultimate (UTS), MPa 790 to 850
600
Tensile Strength: Yield (Proof), MPa 450 to 630
420

Thermal Properties

Latent Heat of Fusion, J/g 280
250
Maximum Temperature: Mechanical, °C 870
410
Melting Completion (Liquidus), °C 1440
1460
Melting Onset (Solidus), °C 1400
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 15
44
Thermal Expansion, µm/m-K 10
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.6
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.4
1.8
Embodied Energy, MJ/kg 33
24
Embodied Water, L/kg 120
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 93 to 110
110
Resilience: Unit (Modulus of Resilience), kJ/m3 520 to 1000
470
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 28 to 31
21
Strength to Weight: Bending, points 25 to 26
20
Thermal Diffusivity, mm2/s 4.0
12
Thermal Shock Resistance, points 28 to 30
18

Alloy Composition

Aluminum (Al), % 0
0 to 0.015
Carbon (C), % 0.33 to 0.45
0 to 0.22
Chromium (Cr), % 15.5 to 17.5
0 to 0.35
Copper (Cu), % 0
0 to 0.6
Iron (Fe), % 77.2 to 83.4
95 to 99.05
Manganese (Mn), % 0 to 1.5
1.0 to 1.8
Molybdenum (Mo), % 0.8 to 1.3
0 to 0.13
Nickel (Ni), % 0 to 1.0
0 to 0.85
Niobium (Nb), % 0
0 to 0.060
Nitrogen (N), % 0
0 to 0.027
Phosphorus (P), % 0 to 0.040
0 to 0.035
Silicon (Si), % 0 to 1.0
0 to 0.65
Sulfur (S), % 0 to 0.015
0 to 0.030
Titanium (Ti), % 0
0 to 0.060
Vanadium (V), % 0
0 to 0.22