MakeItFrom.com
Menu (ESC)

EN 1.4122 Stainless Steel vs. C70700 Copper-nickel

EN 1.4122 stainless steel belongs to the iron alloys classification, while C70700 copper-nickel belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4122 stainless steel and the bottom bar is C70700 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 14
39
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
46
Shear Strength, MPa 480 to 520
220
Tensile Strength: Ultimate (UTS), MPa 790 to 850
320
Tensile Strength: Yield (Proof), MPa 450 to 630
110

Thermal Properties

Latent Heat of Fusion, J/g 280
220
Maximum Temperature: Mechanical, °C 870
220
Melting Completion (Liquidus), °C 1440
1120
Melting Onset (Solidus), °C 1400
1060
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 15
59
Thermal Expansion, µm/m-K 10
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
11
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
12

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
34
Density, g/cm3 7.7
8.9
Embodied Carbon, kg CO2/kg material 2.4
3.4
Embodied Energy, MJ/kg 33
52
Embodied Water, L/kg 120
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 93 to 110
100
Resilience: Unit (Modulus of Resilience), kJ/m3 520 to 1000
51
Stiffness to Weight: Axial, points 14
7.6
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 28 to 31
10
Strength to Weight: Bending, points 25 to 26
12
Thermal Diffusivity, mm2/s 4.0
17
Thermal Shock Resistance, points 28 to 30
12

Alloy Composition

Carbon (C), % 0.33 to 0.45
0
Chromium (Cr), % 15.5 to 17.5
0
Copper (Cu), % 0
88.5 to 90.5
Iron (Fe), % 77.2 to 83.4
0 to 0.050
Manganese (Mn), % 0 to 1.5
0 to 0.5
Molybdenum (Mo), % 0.8 to 1.3
0
Nickel (Ni), % 0 to 1.0
9.5 to 10.5
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0
Residuals, % 0
0 to 0.5