MakeItFrom.com
Menu (ESC)

EN 1.4122 Stainless Steel vs. C81400 Copper

EN 1.4122 stainless steel belongs to the iron alloys classification, while C81400 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4122 stainless steel and the bottom bar is C81400 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 14
11
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
41
Tensile Strength: Ultimate (UTS), MPa 790 to 850
370
Tensile Strength: Yield (Proof), MPa 450 to 630
250

Thermal Properties

Latent Heat of Fusion, J/g 280
210
Maximum Temperature: Mechanical, °C 870
200
Melting Completion (Liquidus), °C 1440
1090
Melting Onset (Solidus), °C 1400
1070
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 15
260
Thermal Expansion, µm/m-K 10
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
60
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
61

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
33
Density, g/cm3 7.7
8.9
Embodied Carbon, kg CO2/kg material 2.4
2.8
Embodied Energy, MJ/kg 33
45
Embodied Water, L/kg 120
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 93 to 110
36
Resilience: Unit (Modulus of Resilience), kJ/m3 520 to 1000
260
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 28 to 31
11
Strength to Weight: Bending, points 25 to 26
13
Thermal Diffusivity, mm2/s 4.0
75
Thermal Shock Resistance, points 28 to 30
13

Alloy Composition

Beryllium (Be), % 0
0.020 to 0.1
Carbon (C), % 0.33 to 0.45
0
Chromium (Cr), % 15.5 to 17.5
0.6 to 1.0
Copper (Cu), % 0
98.4 to 99.38
Iron (Fe), % 77.2 to 83.4
0
Manganese (Mn), % 0 to 1.5
0
Molybdenum (Mo), % 0.8 to 1.3
0
Nickel (Ni), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0
Residuals, % 0
0 to 0.5