MakeItFrom.com
Menu (ESC)

EN 1.4123 Stainless Steel vs. 6063A Aluminum

EN 1.4123 stainless steel belongs to the iron alloys classification, while 6063A aluminum belongs to the aluminum alloys. There are 24 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4123 stainless steel and the bottom bar is 6063A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
68
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
26
Tensile Strength: Ultimate (UTS), MPa 720 to 810
130 to 260

Thermal Properties

Latent Heat of Fusion, J/g 280
400
Maximum Temperature: Mechanical, °C 840
160
Melting Completion (Liquidus), °C 1450
640
Melting Onset (Solidus), °C 1410
620
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 23
200
Thermal Expansion, µm/m-K 10
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
49 to 54
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
160 to 180

Otherwise Unclassified Properties

Base Metal Price, % relative 10
9.5
Density, g/cm3 7.7
2.7
Embodied Carbon, kg CO2/kg material 4.2
8.3
Embodied Energy, MJ/kg 62
150
Embodied Water, L/kg 120
1190

Common Calculations

Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 26 to 29
13 to 26
Strength to Weight: Bending, points 23 to 25
21 to 33
Thermal Diffusivity, mm2/s 6.3
83
Thermal Shock Resistance, points 26 to 29
5.6 to 11

Alloy Composition

Aluminum (Al), % 0
97.5 to 99
Carbon (C), % 0.35 to 0.5
0
Chromium (Cr), % 14 to 16.5
0 to 0.050
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 76.7 to 84.6
0.15 to 0.35
Magnesium (Mg), % 0
0.6 to 0.9
Manganese (Mn), % 0 to 1.0
0 to 0.15
Molybdenum (Mo), % 1.0 to 2.5
0
Nickel (Ni), % 0 to 0.5
0
Nitrogen (N), % 0.1 to 0.3
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0.3 to 0.6
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.1
Vanadium (V), % 0 to 1.5
0
Zinc (Zn), % 0
0 to 0.15
Residuals, % 0
0 to 0.15

Comparable Variants