MakeItFrom.com
Menu (ESC)

EN 1.4123 Stainless Steel vs. Grade 32 Titanium

EN 1.4123 stainless steel belongs to the iron alloys classification, while grade 32 titanium belongs to the titanium alloys. There are 24 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is EN 1.4123 stainless steel and the bottom bar is grade 32 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 77
40
Tensile Strength: Ultimate (UTS), MPa 720 to 810
770

Thermal Properties

Latent Heat of Fusion, J/g 280
410
Maximum Temperature: Mechanical, °C 840
310
Melting Completion (Liquidus), °C 1450
1610
Melting Onset (Solidus), °C 1410
1560
Specific Heat Capacity, J/kg-K 480
550
Thermal Conductivity, W/m-K 23
7.5
Thermal Expansion, µm/m-K 10
8.2

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 10
38
Density, g/cm3 7.7
4.5
Embodied Carbon, kg CO2/kg material 4.2
32
Embodied Energy, MJ/kg 62
530
Embodied Water, L/kg 120
180

Common Calculations

Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 26 to 29
47
Strength to Weight: Bending, points 23 to 25
41
Thermal Diffusivity, mm2/s 6.3
3.0
Thermal Shock Resistance, points 26 to 29
63

Alloy Composition

Aluminum (Al), % 0
4.5 to 5.5
Carbon (C), % 0.35 to 0.5
0 to 0.080
Chromium (Cr), % 14 to 16.5
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 76.7 to 84.6
0 to 0.25
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 1.0 to 2.5
0.6 to 1.2
Nickel (Ni), % 0 to 0.5
0
Nitrogen (N), % 0.1 to 0.3
0 to 0.030
Oxygen (O), % 0
0 to 0.11
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0.060 to 0.14
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0.6 to 1.4
Titanium (Ti), % 0
88.1 to 93
Vanadium (V), % 0 to 1.5
0.6 to 1.4
Zirconium (Zr), % 0
0.6 to 1.4
Residuals, % 0
0 to 0.4