MakeItFrom.com
Menu (ESC)

EN 1.4123 Stainless Steel vs. C64800 Bronze

EN 1.4123 stainless steel belongs to the iron alloys classification, while C64800 bronze belongs to the copper alloys. There are 24 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is EN 1.4123 stainless steel and the bottom bar is C64800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
44
Tensile Strength: Ultimate (UTS), MPa 720 to 810
640

Thermal Properties

Latent Heat of Fusion, J/g 280
220
Maximum Temperature: Mechanical, °C 840
200
Melting Completion (Liquidus), °C 1450
1090
Melting Onset (Solidus), °C 1410
1030
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 23
260
Thermal Expansion, µm/m-K 10
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
65
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
66

Otherwise Unclassified Properties

Base Metal Price, % relative 10
33
Density, g/cm3 7.7
8.9
Embodied Carbon, kg CO2/kg material 4.2
2.7
Embodied Energy, MJ/kg 62
43
Embodied Water, L/kg 120
310

Common Calculations

Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 26 to 29
20
Strength to Weight: Bending, points 23 to 25
19
Thermal Diffusivity, mm2/s 6.3
75
Thermal Shock Resistance, points 26 to 29
23

Alloy Composition

Carbon (C), % 0.35 to 0.5
0
Chromium (Cr), % 14 to 16.5
0 to 0.090
Cobalt (Co), % 0
1.0 to 3.0
Copper (Cu), % 0
92.4 to 98.8
Iron (Fe), % 76.7 to 84.6
0 to 1.0
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 1.0 to 2.5
0
Nickel (Ni), % 0 to 0.5
0 to 0.5
Nitrogen (N), % 0.1 to 0.3
0
Phosphorus (P), % 0 to 0.040
0 to 0.5
Silicon (Si), % 0 to 1.0
0.2 to 1.0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.5
Vanadium (V), % 0 to 1.5
0
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.5