MakeItFrom.com
Menu (ESC)

EN 1.4125 Stainless Steel vs. EN AC-44300 Aluminum

EN 1.4125 stainless steel belongs to the iron alloys classification, while EN AC-44300 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4125 stainless steel and the bottom bar is EN AC-44300 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 250
68
Elastic (Young's, Tensile) Modulus, GPa 200
72
Elongation at Break, % 19
1.1
Fatigue Strength, MPa 300
100
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
27
Tensile Strength: Ultimate (UTS), MPa 800
270
Tensile Strength: Yield (Proof), MPa 470
150

Thermal Properties

Latent Heat of Fusion, J/g 280
570
Maximum Temperature: Mechanical, °C 870
170
Melting Completion (Liquidus), °C 1430
590
Melting Onset (Solidus), °C 1390
580
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 15
130
Thermal Expansion, µm/m-K 10
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
33
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
120

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
9.5
Density, g/cm3 7.7
2.5
Embodied Carbon, kg CO2/kg material 2.3
7.7
Embodied Energy, MJ/kg 32
140
Embodied Water, L/kg 120
1050

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
2.6
Resilience: Unit (Modulus of Resilience), kJ/m3 570
150
Stiffness to Weight: Axial, points 14
16
Stiffness to Weight: Bending, points 25
55
Strength to Weight: Axial, points 29
29
Strength to Weight: Bending, points 25
36
Thermal Diffusivity, mm2/s 4.1
58
Thermal Shock Resistance, points 29
13

Alloy Composition

Aluminum (Al), % 0
84.3 to 89.5
Carbon (C), % 1.0 to 1.2
0
Chromium (Cr), % 16 to 18
0
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 78 to 82.7
0 to 1.0
Manganese (Mn), % 0 to 1.0
0 to 0.55
Molybdenum (Mo), % 0.4 to 0.8
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
10.5 to 13.5
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.15
Residuals, % 0
0 to 0.25