MakeItFrom.com
Menu (ESC)

EN 1.4150 Stainless Steel vs. EN 2.4669 Nickel

EN 1.4150 stainless steel belongs to the iron alloys classification, while EN 2.4669 nickel belongs to the nickel alloys. They have a modest 23% of their average alloy composition in common, which, by itself, doesn't mean much. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4150 stainless steel and the bottom bar is EN 2.4669 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 20
16
Fatigue Strength, MPa 270
390
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
73
Shear Strength, MPa 460
680
Tensile Strength: Ultimate (UTS), MPa 730
1110
Tensile Strength: Yield (Proof), MPa 430
720

Thermal Properties

Latent Heat of Fusion, J/g 290
310
Maximum Temperature: Mechanical, °C 840
960
Melting Completion (Liquidus), °C 1420
1380
Melting Onset (Solidus), °C 1380
1330
Specific Heat Capacity, J/kg-K 490
460
Thermal Conductivity, W/m-K 23
12
Thermal Expansion, µm/m-K 10
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 8.5
60
Density, g/cm3 7.6
8.4
Embodied Carbon, kg CO2/kg material 2.8
10
Embodied Energy, MJ/kg 42
150
Embodied Water, L/kg 120
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
160
Resilience: Unit (Modulus of Resilience), kJ/m3 470
1380
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
23
Strength to Weight: Axial, points 27
37
Strength to Weight: Bending, points 24
28
Thermal Diffusivity, mm2/s 6.2
3.1
Thermal Shock Resistance, points 27
33

Alloy Composition

Aluminum (Al), % 0
0.4 to 1.0
Carbon (C), % 0.45 to 0.6
0 to 0.080
Chromium (Cr), % 15 to 16.5
14 to 17
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 0
0 to 0.5
Iron (Fe), % 79 to 82.8
5.0 to 9.0
Manganese (Mn), % 0 to 0.8
0 to 1.0
Molybdenum (Mo), % 0.2 to 0.4
0
Nickel (Ni), % 0 to 0.4
65.9 to 77.7
Niobium (Nb), % 0
0.7 to 1.2
Nitrogen (N), % 0.050 to 0.2
0
Phosphorus (P), % 0 to 0.030
0 to 0.020
Silicon (Si), % 1.3 to 1.7
0 to 0.5
Sulfur (S), % 0 to 0.010
0 to 0.015
Titanium (Ti), % 0
2.3 to 2.8
Vanadium (V), % 0.2 to 0.4
0