MakeItFrom.com
Menu (ESC)

EN 1.4150 Stainless Steel vs. EN AC-46600 Aluminum

EN 1.4150 stainless steel belongs to the iron alloys classification, while EN AC-46600 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4150 stainless steel and the bottom bar is EN AC-46600 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 220
77
Elastic (Young's, Tensile) Modulus, GPa 190
72
Elongation at Break, % 20
1.1
Fatigue Strength, MPa 270
75
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
27
Tensile Strength: Ultimate (UTS), MPa 730
180
Tensile Strength: Yield (Proof), MPa 430
110

Thermal Properties

Latent Heat of Fusion, J/g 290
490
Maximum Temperature: Mechanical, °C 840
170
Melting Completion (Liquidus), °C 1420
620
Melting Onset (Solidus), °C 1380
560
Specific Heat Capacity, J/kg-K 490
890
Thermal Conductivity, W/m-K 23
130
Thermal Expansion, µm/m-K 10
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
29
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
94

Otherwise Unclassified Properties

Base Metal Price, % relative 8.5
10
Density, g/cm3 7.6
2.8
Embodied Carbon, kg CO2/kg material 2.8
7.8
Embodied Energy, MJ/kg 42
150
Embodied Water, L/kg 120
1080

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
1.7
Resilience: Unit (Modulus of Resilience), kJ/m3 470
81
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 27
18
Strength to Weight: Bending, points 24
25
Thermal Diffusivity, mm2/s 6.2
51
Thermal Shock Resistance, points 27
8.1

Alloy Composition

Aluminum (Al), % 0
85.6 to 92.4
Carbon (C), % 0.45 to 0.6
0
Chromium (Cr), % 15 to 16.5
0
Copper (Cu), % 0
1.5 to 2.5
Iron (Fe), % 79 to 82.8
0 to 0.8
Lead (Pb), % 0
0 to 0.25
Magnesium (Mg), % 0
0 to 0.35
Manganese (Mn), % 0 to 0.8
0.15 to 0.65
Molybdenum (Mo), % 0.2 to 0.4
0
Nickel (Ni), % 0 to 0.4
0 to 0.35
Nitrogen (N), % 0.050 to 0.2
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 1.3 to 1.7
6.0 to 8.0
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0
0 to 0.25
Vanadium (V), % 0.2 to 0.4
0
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.15