MakeItFrom.com
Menu (ESC)

EN 1.4150 Stainless Steel vs. R30075 Cobalt

EN 1.4150 stainless steel belongs to the iron alloys classification, while R30075 cobalt belongs to the cobalt alloys. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is EN 1.4150 stainless steel and the bottom bar is R30075 cobalt.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
210 to 250
Elongation at Break, % 20
12
Fatigue Strength, MPa 270
250 to 840
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
82 to 98
Tensile Strength: Ultimate (UTS), MPa 730
780 to 1280
Tensile Strength: Yield (Proof), MPa 430
480 to 840

Thermal Properties

Latent Heat of Fusion, J/g 290
320
Melting Completion (Liquidus), °C 1420
1360
Melting Onset (Solidus), °C 1380
1290
Specific Heat Capacity, J/kg-K 490
450
Thermal Conductivity, W/m-K 23
13
Thermal Expansion, µm/m-K 10
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
2.1

Otherwise Unclassified Properties

Density, g/cm3 7.6
8.4
Embodied Carbon, kg CO2/kg material 2.8
8.1
Embodied Energy, MJ/kg 42
110
Embodied Water, L/kg 120
530

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
84 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 470
560 to 1410
Stiffness to Weight: Axial, points 14
14 to 17
Stiffness to Weight: Bending, points 25
24 to 25
Strength to Weight: Axial, points 27
26 to 42
Strength to Weight: Bending, points 24
22 to 31
Thermal Diffusivity, mm2/s 6.2
3.5
Thermal Shock Resistance, points 27
21 to 29

Alloy Composition

Aluminum (Al), % 0
0 to 0.1
Boron (B), % 0
0 to 0.010
Carbon (C), % 0.45 to 0.6
0 to 0.35
Chromium (Cr), % 15 to 16.5
27 to 30
Cobalt (Co), % 0
58.7 to 68
Iron (Fe), % 79 to 82.8
0 to 0.75
Manganese (Mn), % 0 to 0.8
0 to 1.0
Molybdenum (Mo), % 0.2 to 0.4
5.0 to 7.0
Nickel (Ni), % 0 to 0.4
0 to 0.5
Nitrogen (N), % 0.050 to 0.2
0 to 0.25
Phosphorus (P), % 0 to 0.030
0 to 0.020
Silicon (Si), % 1.3 to 1.7
0 to 1.0
Sulfur (S), % 0 to 0.010
0 to 0.010
Titanium (Ti), % 0
0 to 0.1
Tungsten (W), % 0
0 to 0.2
Vanadium (V), % 0.2 to 0.4
0