MakeItFrom.com
Menu (ESC)

EN 1.4162 Stainless Steel vs. ACI-ASTM CA28MWV Steel

Both EN 1.4162 stainless steel and ACI-ASTM CA28MWV steel are iron alloys. They have 84% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.4162 stainless steel and the bottom bar is ACI-ASTM CA28MWV steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 250
330
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 32
11
Fatigue Strength, MPa 410
470
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 78
76
Tensile Strength: Ultimate (UTS), MPa 780
1080
Tensile Strength: Yield (Proof), MPa 520
870

Thermal Properties

Latent Heat of Fusion, J/g 290
270
Maximum Temperature: Corrosion, °C 430
380
Maximum Temperature: Mechanical, °C 1000
740
Melting Completion (Liquidus), °C 1420
1470
Melting Onset (Solidus), °C 1370
1430
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 15
25
Thermal Expansion, µm/m-K 13
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
4.6
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
5.3

Otherwise Unclassified Properties

Base Metal Price, % relative 12
11
Density, g/cm3 7.7
7.9
Embodied Carbon, kg CO2/kg material 2.6
3.1
Embodied Energy, MJ/kg 38
44
Embodied Water, L/kg 150
100

Common Calculations

PREN (Pitting Resistance) 27
17
Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
110
Resilience: Unit (Modulus of Resilience), kJ/m3 690
1920
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 28
38
Strength to Weight: Bending, points 25
30
Thermal Diffusivity, mm2/s 4.0
6.6
Thermal Shock Resistance, points 21
40

Alloy Composition

Carbon (C), % 0 to 0.040
0.2 to 0.28
Chromium (Cr), % 21 to 22
11 to 12.5
Copper (Cu), % 0.1 to 0.8
0
Iron (Fe), % 67.2 to 73.3
81.4 to 85.8
Manganese (Mn), % 4.0 to 6.0
0.5 to 1.0
Molybdenum (Mo), % 0.1 to 0.8
0.9 to 1.3
Nickel (Ni), % 1.4 to 1.9
0.5 to 1.0
Nitrogen (N), % 0.2 to 0.25
0
Phosphorus (P), % 0 to 0.040
0 to 0.030
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.030
Tungsten (W), % 0
0.9 to 1.3
Vanadium (V), % 0
0.2 to 0.3