MakeItFrom.com
Menu (ESC)

EN 1.4303 Stainless Steel vs. EN 2.4668 Nickel

EN 1.4303 stainless steel belongs to the iron alloys classification, while EN 2.4668 nickel belongs to the nickel alloys. They have 48% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.4303 stainless steel and the bottom bar is EN 2.4668 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 13 to 49
14
Fatigue Strength, MPa 220 to 320
590
Impact Strength: V-Notched Charpy, J 91 to 98
14
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
75
Shear Strength, MPa 420 to 540
840
Tensile Strength: Ultimate (UTS), MPa 590 to 900
1390
Tensile Strength: Yield (Proof), MPa 230 to 560
1160

Thermal Properties

Latent Heat of Fusion, J/g 290
310
Maximum Temperature: Mechanical, °C 940
980
Melting Completion (Liquidus), °C 1420
1460
Melting Onset (Solidus), °C 1380
1410
Specific Heat Capacity, J/kg-K 480
450
Thermal Conductivity, W/m-K 15
13
Thermal Expansion, µm/m-K 16
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 17
75
Density, g/cm3 7.8
8.3
Embodied Carbon, kg CO2/kg material 3.2
13
Embodied Energy, MJ/kg 46
190
Embodied Water, L/kg 150
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 230
180
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 800
3490
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
23
Strength to Weight: Axial, points 21 to 32
46
Strength to Weight: Bending, points 20 to 26
33
Thermal Diffusivity, mm2/s 4.0
3.5
Thermal Shock Resistance, points 13 to 20
40

Alloy Composition

Aluminum (Al), % 0
0.3 to 0.7
Boron (B), % 0
0.0020 to 0.0060
Carbon (C), % 0 to 0.060
0.020 to 0.080
Chromium (Cr), % 17 to 19
17 to 21
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 64.8 to 72
11.2 to 24.6
Manganese (Mn), % 0 to 2.0
0 to 0.35
Molybdenum (Mo), % 0
2.8 to 3.3
Nickel (Ni), % 11 to 13
50 to 55
Niobium (Nb), % 0
4.7 to 5.5
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0 to 0.015
Silicon (Si), % 0 to 1.0
0 to 0.35
Sulfur (S), % 0 to 0.015
0 to 0.015
Titanium (Ti), % 0
0.6 to 1.2