MakeItFrom.com
Menu (ESC)

EN 1.4303 Stainless Steel vs. S35045 Stainless Steel

Both EN 1.4303 stainless steel and S35045 stainless steel are iron alloys. They have 67% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.4303 stainless steel and the bottom bar is S35045 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 13 to 49
39
Fatigue Strength, MPa 220 to 320
170
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
78
Shear Strength, MPa 420 to 540
370
Tensile Strength: Ultimate (UTS), MPa 590 to 900
540
Tensile Strength: Yield (Proof), MPa 230 to 560
190

Thermal Properties

Latent Heat of Fusion, J/g 290
310
Maximum Temperature: Corrosion, °C 410
520
Maximum Temperature: Mechanical, °C 940
1100
Melting Completion (Liquidus), °C 1420
1390
Melting Onset (Solidus), °C 1380
1340
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 15
12
Thermal Expansion, µm/m-K 16
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 17
34
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 3.2
5.8
Embodied Energy, MJ/kg 46
83
Embodied Water, L/kg 150
230

Common Calculations

PREN (Pitting Resistance) 19
27
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 230
170
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 800
94
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 21 to 32
19
Strength to Weight: Bending, points 20 to 26
19
Thermal Diffusivity, mm2/s 4.0
3.2
Thermal Shock Resistance, points 13 to 20
12

Alloy Composition

Aluminum (Al), % 0
0.15 to 0.6
Carbon (C), % 0 to 0.060
0.060 to 0.1
Chromium (Cr), % 17 to 19
25 to 29
Copper (Cu), % 0
0 to 0.75
Iron (Fe), % 64.8 to 72
29.4 to 42.6
Manganese (Mn), % 0 to 2.0
0 to 1.5
Nickel (Ni), % 11 to 13
32 to 37
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0 to 0.045
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.015
Titanium (Ti), % 0
0.15 to 0.6