MakeItFrom.com
Menu (ESC)

EN 1.4306 Stainless Steel vs. C17465 Copper

EN 1.4306 stainless steel belongs to the iron alloys classification, while C17465 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4306 stainless steel and the bottom bar is C17465 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 14 to 45
5.3 to 36
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
44
Shear Strength, MPa 400 to 550
210 to 540
Tensile Strength: Ultimate (UTS), MPa 580 to 900
310 to 930
Tensile Strength: Yield (Proof), MPa 210 to 570
120 to 830

Thermal Properties

Latent Heat of Fusion, J/g 290
210
Maximum Temperature: Mechanical, °C 960
210
Melting Completion (Liquidus), °C 1420
1080
Melting Onset (Solidus), °C 1380
1030
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 15
220
Thermal Expansion, µm/m-K 16
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
22 to 51
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
23 to 52

Otherwise Unclassified Properties

Base Metal Price, % relative 16
45
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 3.2
4.1
Embodied Energy, MJ/kg 45
64
Embodied Water, L/kg 150
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 200
47 to 90
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 820
64 to 2920
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 21 to 32
9.7 to 29
Strength to Weight: Bending, points 20 to 27
11 to 24
Thermal Diffusivity, mm2/s 4.0
64
Thermal Shock Resistance, points 13 to 20
11 to 33

Alloy Composition

Aluminum (Al), % 0
0 to 0.2
Beryllium (Be), % 0
0.15 to 0.5
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 18 to 20
0
Copper (Cu), % 0
95.7 to 98.7
Iron (Fe), % 64.8 to 72
0 to 0.2
Lead (Pb), % 0
0.2 to 0.6
Manganese (Mn), % 0 to 2.0
0
Nickel (Ni), % 10 to 12
1.0 to 1.4
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0 to 0.2
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.25
Zirconium (Zr), % 0
0 to 0.5
Residuals, % 0
0 to 0.5

Comparable Variants