MakeItFrom.com
Menu (ESC)

EN 1.4306 Stainless Steel vs. C66200 Brass

EN 1.4306 stainless steel belongs to the iron alloys classification, while C66200 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4306 stainless steel and the bottom bar is C66200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 14 to 45
8.0 to 15
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
42
Shear Strength, MPa 400 to 550
270 to 300
Tensile Strength: Ultimate (UTS), MPa 580 to 900
450 to 520
Tensile Strength: Yield (Proof), MPa 210 to 570
410 to 480

Thermal Properties

Latent Heat of Fusion, J/g 290
200
Maximum Temperature: Mechanical, °C 960
180
Melting Completion (Liquidus), °C 1420
1070
Melting Onset (Solidus), °C 1380
1030
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 15
150
Thermal Expansion, µm/m-K 16
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
35
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
36

Otherwise Unclassified Properties

Base Metal Price, % relative 16
29
Density, g/cm3 7.8
8.7
Embodied Carbon, kg CO2/kg material 3.2
2.7
Embodied Energy, MJ/kg 45
43
Embodied Water, L/kg 150
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 200
40 to 66
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 820
760 to 1030
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 21 to 32
14 to 17
Strength to Weight: Bending, points 20 to 27
15 to 16
Thermal Diffusivity, mm2/s 4.0
45
Thermal Shock Resistance, points 13 to 20
16 to 18

Alloy Composition

Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 18 to 20
0
Copper (Cu), % 0
86.6 to 91
Iron (Fe), % 64.8 to 72
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 2.0
0
Nickel (Ni), % 10 to 12
0.3 to 1.0
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0.050 to 0.2
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0.2 to 0.7
Zinc (Zn), % 0
6.5 to 12.9
Residuals, % 0
0 to 0.5

Comparable Variants