MakeItFrom.com
Menu (ESC)

EN 1.4306 Stainless Steel vs. C96300 Copper-nickel

EN 1.4306 stainless steel belongs to the iron alloys classification, while C96300 copper-nickel belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4306 stainless steel and the bottom bar is C96300 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190 to 270
150
Elastic (Young's, Tensile) Modulus, GPa 200
130
Elongation at Break, % 14 to 45
11
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
49
Tensile Strength: Ultimate (UTS), MPa 580 to 900
580
Tensile Strength: Yield (Proof), MPa 210 to 570
430

Thermal Properties

Latent Heat of Fusion, J/g 290
230
Maximum Temperature: Mechanical, °C 960
240
Melting Completion (Liquidus), °C 1420
1200
Melting Onset (Solidus), °C 1380
1150
Specific Heat Capacity, J/kg-K 480
400
Thermal Conductivity, W/m-K 15
37
Thermal Expansion, µm/m-K 16
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
6.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
6.1

Otherwise Unclassified Properties

Base Metal Price, % relative 16
42
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 3.2
5.1
Embodied Energy, MJ/kg 45
76
Embodied Water, L/kg 150
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 200
59
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 820
720
Stiffness to Weight: Axial, points 14
8.2
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 21 to 32
18
Strength to Weight: Bending, points 20 to 27
17
Thermal Diffusivity, mm2/s 4.0
10
Thermal Shock Resistance, points 13 to 20
20

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.15
Chromium (Cr), % 18 to 20
0
Copper (Cu), % 0
72.3 to 80.8
Iron (Fe), % 64.8 to 72
0.5 to 1.5
Lead (Pb), % 0
0 to 0.010
Manganese (Mn), % 0 to 2.0
0.25 to 1.5
Nickel (Ni), % 10 to 12
18 to 22
Niobium (Nb), % 0
0.5 to 1.5
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0 to 0.020
Silicon (Si), % 0 to 1.0
0 to 0.5
Sulfur (S), % 0 to 0.015
0 to 0.020
Residuals, % 0
0 to 0.5