MakeItFrom.com
Menu (ESC)

EN 1.4307 Stainless Steel vs. C84000 Brass

EN 1.4307 stainless steel belongs to the iron alloys classification, while C84000 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4307 stainless steel and the bottom bar is C84000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180 to 270
65
Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 14 to 46
27
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
42
Tensile Strength: Ultimate (UTS), MPa 590 to 900
250
Tensile Strength: Yield (Proof), MPa 200 to 570
140

Thermal Properties

Latent Heat of Fusion, J/g 290
190
Maximum Temperature: Mechanical, °C 940
170
Melting Completion (Liquidus), °C 1430
1040
Melting Onset (Solidus), °C 1380
940
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 15
72
Thermal Expansion, µm/m-K 16
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
16
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
17

Otherwise Unclassified Properties

Base Metal Price, % relative 15
30
Density, g/cm3 7.8
8.6
Embodied Carbon, kg CO2/kg material 3.0
3.0
Embodied Energy, MJ/kg 43
49
Embodied Water, L/kg 140
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 210
58
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 810
83
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 21 to 32
8.2
Strength to Weight: Bending, points 20 to 27
10
Thermal Diffusivity, mm2/s 4.0
22
Thermal Shock Resistance, points 13 to 20
9.0

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.020
Boron (B), % 0
0 to 0.1
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 17.5 to 19.5
0
Copper (Cu), % 0
82 to 89
Iron (Fe), % 66.8 to 74.5
0 to 0.4
Lead (Pb), % 0
0 to 0.090
Manganese (Mn), % 0 to 2.0
0 to 0.010
Nickel (Ni), % 8.0 to 10.5
0.5 to 2.0
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0 to 0.050
Silicon (Si), % 0 to 1.0
0 to 0.0050
Sulfur (S), % 0 to 0.015
0.1 to 0.65
Tin (Sn), % 0
2.0 to 4.0
Zinc (Zn), % 0
5.0 to 14
Zirconium (Zr), % 0
0 to 0.1
Residuals, % 0
0 to 0.7