MakeItFrom.com
Menu (ESC)

EN 1.4307 Stainless Steel vs. C89320 Bronze

EN 1.4307 stainless steel belongs to the iron alloys classification, while C89320 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.4307 stainless steel and the bottom bar is C89320 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 14 to 46
17
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
40
Tensile Strength: Ultimate (UTS), MPa 590 to 900
270
Tensile Strength: Yield (Proof), MPa 200 to 570
140

Thermal Properties

Latent Heat of Fusion, J/g 290
190
Maximum Temperature: Mechanical, °C 940
180
Melting Completion (Liquidus), °C 1430
1050
Melting Onset (Solidus), °C 1380
930
Specific Heat Capacity, J/kg-K 480
360
Thermal Conductivity, W/m-K 15
56
Thermal Expansion, µm/m-K 16
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
15
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
15

Otherwise Unclassified Properties

Base Metal Price, % relative 15
37
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 3.0
3.5
Embodied Energy, MJ/kg 43
56
Embodied Water, L/kg 140
490

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 210
38
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 810
93
Stiffness to Weight: Axial, points 14
6.8
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 21 to 32
8.5
Strength to Weight: Bending, points 20 to 27
10
Thermal Diffusivity, mm2/s 4.0
17
Thermal Shock Resistance, points 13 to 20
10

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.35
Bismuth (Bi), % 0
4.0 to 6.0
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 17.5 to 19.5
0
Copper (Cu), % 0
87 to 91
Iron (Fe), % 66.8 to 74.5
0 to 0.2
Lead (Pb), % 0
0 to 0.090
Manganese (Mn), % 0 to 2.0
0
Nickel (Ni), % 8.0 to 10.5
0 to 1.0
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0 to 0.3
Silicon (Si), % 0 to 1.0
0 to 0.0050
Sulfur (S), % 0 to 0.015
0 to 0.080
Tin (Sn), % 0
5.0 to 7.0
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.5