MakeItFrom.com
Menu (ESC)

EN 1.4310 Stainless Steel vs. C17000 Copper

EN 1.4310 stainless steel belongs to the iron alloys classification, while C17000 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.4310 stainless steel and the bottom bar is C17000 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 14 to 45
1.1 to 31
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
45
Shear Strength, MPa 510 to 550
320 to 750
Tensile Strength: Ultimate (UTS), MPa 730 to 900
490 to 1310
Tensile Strength: Yield (Proof), MPa 260 to 570
160 to 1140

Thermal Properties

Latent Heat of Fusion, J/g 290
230
Maximum Temperature: Mechanical, °C 910
270
Melting Completion (Liquidus), °C 1420
980
Melting Onset (Solidus), °C 1380
870
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 15
110
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
22
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
22

Otherwise Unclassified Properties

Density, g/cm3 7.8
8.8
Embodied Carbon, kg CO2/kg material 2.9
8.7
Embodied Energy, MJ/kg 42
140
Embodied Water, L/kg 140
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 260
4.2 to 390
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 830
110 to 5420
Stiffness to Weight: Axial, points 14
7.6
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 26 to 32
15 to 41
Strength to Weight: Bending, points 23 to 27
16 to 30
Thermal Diffusivity, mm2/s 4.0
32
Thermal Shock Resistance, points 15 to 18
17 to 45

Alloy Composition

Aluminum (Al), % 0
0 to 0.2
Beryllium (Be), % 0
1.6 to 1.8
Carbon (C), % 0.050 to 0.15
0
Chromium (Cr), % 16 to 19
0
Copper (Cu), % 0
96.3 to 98.2
Iron (Fe), % 66.4 to 78
0 to 0.4
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 0 to 0.8
0
Nickel (Ni), % 6.0 to 9.5
0.2 to 0.6
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 2.0
0 to 0.2
Sulfur (S), % 0 to 0.015
0
Residuals, % 0
0 to 0.5