MakeItFrom.com
Menu (ESC)

EN 1.4310 Stainless Steel vs. C69710 Brass

EN 1.4310 stainless steel belongs to the iron alloys classification, while C69710 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4310 stainless steel and the bottom bar is C69710 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 14 to 45
25
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 77
41
Shear Strength, MPa 510 to 550
300
Tensile Strength: Ultimate (UTS), MPa 730 to 900
470
Tensile Strength: Yield (Proof), MPa 260 to 570
230

Thermal Properties

Latent Heat of Fusion, J/g 290
240
Maximum Temperature: Mechanical, °C 910
160
Melting Completion (Liquidus), °C 1420
930
Melting Onset (Solidus), °C 1380
880
Specific Heat Capacity, J/kg-K 480
400
Thermal Conductivity, W/m-K 15
40
Thermal Expansion, µm/m-K 18
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 14
26
Density, g/cm3 7.8
8.3
Embodied Carbon, kg CO2/kg material 2.9
2.7
Embodied Energy, MJ/kg 42
44
Embodied Water, L/kg 140
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 260
99
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 830
250
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 26 to 32
16
Strength to Weight: Bending, points 23 to 27
16
Thermal Diffusivity, mm2/s 4.0
12
Thermal Shock Resistance, points 15 to 18
16

Alloy Composition

Arsenic (As), % 0
0.030 to 0.060
Carbon (C), % 0.050 to 0.15
0
Chromium (Cr), % 16 to 19
0
Copper (Cu), % 0
75 to 80
Iron (Fe), % 66.4 to 78
0 to 0.2
Lead (Pb), % 0
0.5 to 1.5
Manganese (Mn), % 0 to 2.0
0 to 0.4
Molybdenum (Mo), % 0 to 0.8
0
Nickel (Ni), % 6.0 to 9.5
0
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 2.0
2.5 to 3.5
Sulfur (S), % 0 to 0.015
0
Zinc (Zn), % 0
13.8 to 22
Residuals, % 0
0 to 0.5