MakeItFrom.com
Menu (ESC)

EN 1.4310 Stainless Steel vs. S30600 Stainless Steel

Both EN 1.4310 stainless steel and S30600 stainless steel are iron alloys. They have 89% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.4310 stainless steel and the bottom bar is S30600 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200 to 270
180
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 14 to 45
45
Fatigue Strength, MPa 240 to 330
250
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
76
Shear Strength, MPa 510 to 550
430
Tensile Strength: Ultimate (UTS), MPa 730 to 900
610
Tensile Strength: Yield (Proof), MPa 260 to 570
270

Thermal Properties

Latent Heat of Fusion, J/g 290
350
Maximum Temperature: Corrosion, °C 410
410
Maximum Temperature: Mechanical, °C 910
950
Melting Completion (Liquidus), °C 1420
1380
Melting Onset (Solidus), °C 1380
1330
Specific Heat Capacity, J/kg-K 480
490
Thermal Conductivity, W/m-K 15
14
Thermal Expansion, µm/m-K 18
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 14
19
Density, g/cm3 7.8
7.6
Embodied Carbon, kg CO2/kg material 2.9
3.6
Embodied Energy, MJ/kg 42
51
Embodied Water, L/kg 140
150

Common Calculations

PREN (Pitting Resistance) 20
18
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 260
220
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 830
190
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 26 to 32
22
Strength to Weight: Bending, points 23 to 27
21
Thermal Diffusivity, mm2/s 4.0
3.7
Thermal Shock Resistance, points 15 to 18
14

Alloy Composition

Carbon (C), % 0.050 to 0.15
0 to 0.018
Chromium (Cr), % 16 to 19
17 to 18.5
Copper (Cu), % 0
0 to 0.5
Iron (Fe), % 66.4 to 78
58.9 to 65.3
Manganese (Mn), % 0 to 2.0
0 to 2.0
Molybdenum (Mo), % 0 to 0.8
0 to 0.2
Nickel (Ni), % 6.0 to 9.5
14 to 15.5
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0 to 0.020
Silicon (Si), % 0 to 2.0
3.7 to 4.3
Sulfur (S), % 0 to 0.015
0 to 0.020