MakeItFrom.com
Menu (ESC)

EN 1.4310 Stainless Steel vs. S43940 Stainless Steel

Both EN 1.4310 stainless steel and S43940 stainless steel are iron alloys. They have a moderately high 91% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.4310 stainless steel and the bottom bar is S43940 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200 to 270
160
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 14 to 45
21
Fatigue Strength, MPa 240 to 330
180
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
77
Shear Strength, MPa 510 to 550
310
Tensile Strength: Ultimate (UTS), MPa 730 to 900
490
Tensile Strength: Yield (Proof), MPa 260 to 570
280

Thermal Properties

Latent Heat of Fusion, J/g 290
280
Maximum Temperature: Corrosion, °C 410
540
Maximum Temperature: Mechanical, °C 910
890
Melting Completion (Liquidus), °C 1420
1440
Melting Onset (Solidus), °C 1380
1400
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 15
25
Thermal Expansion, µm/m-K 18
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 14
12
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 2.9
2.6
Embodied Energy, MJ/kg 42
38
Embodied Water, L/kg 140
120

Common Calculations

PREN (Pitting Resistance) 20
18
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 260
86
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 830
200
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 26 to 32
18
Strength to Weight: Bending, points 23 to 27
18
Thermal Diffusivity, mm2/s 4.0
6.8
Thermal Shock Resistance, points 15 to 18
18

Alloy Composition

Carbon (C), % 0.050 to 0.15
0 to 0.030
Chromium (Cr), % 16 to 19
17.5 to 18.5
Iron (Fe), % 66.4 to 78
78.2 to 82.1
Manganese (Mn), % 0 to 2.0
0 to 1.0
Molybdenum (Mo), % 0 to 0.8
0
Nickel (Ni), % 6.0 to 9.5
0
Niobium (Nb), % 0
0.3 to 0.6
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0 to 2.0
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.015
Titanium (Ti), % 0
0.1 to 0.6