MakeItFrom.com
Menu (ESC)

EN 1.4310 Stainless Steel vs. WE54A Magnesium

EN 1.4310 stainless steel belongs to the iron alloys classification, while WE54A magnesium belongs to the magnesium alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4310 stainless steel and the bottom bar is WE54A magnesium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200 to 270
85
Elastic (Young's, Tensile) Modulus, GPa 200
44
Elongation at Break, % 14 to 45
4.3 to 5.6
Fatigue Strength, MPa 240 to 330
98 to 130
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
17
Shear Strength, MPa 510 to 550
150 to 170
Tensile Strength: Ultimate (UTS), MPa 730 to 900
270 to 300
Tensile Strength: Yield (Proof), MPa 260 to 570
180

Thermal Properties

Latent Heat of Fusion, J/g 290
330
Maximum Temperature: Mechanical, °C 910
170
Melting Completion (Liquidus), °C 1420
640
Melting Onset (Solidus), °C 1380
570
Specific Heat Capacity, J/kg-K 480
960
Thermal Conductivity, W/m-K 15
52
Thermal Expansion, µm/m-K 18
25

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
10
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
47

Otherwise Unclassified Properties

Base Metal Price, % relative 14
34
Density, g/cm3 7.8
1.9
Embodied Carbon, kg CO2/kg material 2.9
29
Embodied Energy, MJ/kg 42
260
Embodied Water, L/kg 140
900

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 260
10 to 14
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 830
360 to 380
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
62
Strength to Weight: Axial, points 26 to 32
39 to 43
Strength to Weight: Bending, points 23 to 27
49 to 51
Thermal Diffusivity, mm2/s 4.0
28
Thermal Shock Resistance, points 15 to 18
18 to 19

Alloy Composition

Carbon (C), % 0.050 to 0.15
0
Chromium (Cr), % 16 to 19
0
Copper (Cu), % 0
0 to 0.030
Iron (Fe), % 66.4 to 78
0 to 0.010
Lithium (Li), % 0
0 to 0.2
Magnesium (Mg), % 0
88.7 to 93.4
Manganese (Mn), % 0 to 2.0
0 to 0.030
Molybdenum (Mo), % 0 to 0.8
0
Nickel (Ni), % 6.0 to 9.5
0 to 0.0050
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 2.0
0 to 0.010
Sulfur (S), % 0 to 0.015
0
Unspecified Rare Earths, % 0
1.5 to 4.0
Yttrium (Y), % 0
4.8 to 5.5
Zinc (Zn), % 0
0 to 0.2
Zirconium (Zr), % 0
0.4 to 1.0
Residuals, % 0
0 to 0.3