MakeItFrom.com
Menu (ESC)

EN 1.4313 Stainless Steel vs. A357.0 Aluminum

EN 1.4313 stainless steel belongs to the iron alloys classification, while A357.0 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4313 stainless steel and the bottom bar is A357.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 12 to 17
3.7
Fatigue Strength, MPa 340 to 510
100
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
26
Shear Strength, MPa 460 to 600
240
Tensile Strength: Ultimate (UTS), MPa 750 to 1000
350
Tensile Strength: Yield (Proof), MPa 580 to 910
270

Thermal Properties

Latent Heat of Fusion, J/g 280
500
Maximum Temperature: Mechanical, °C 780
170
Melting Completion (Liquidus), °C 1450
610
Melting Onset (Solidus), °C 1400
560
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 25
160
Thermal Expansion, µm/m-K 10
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
40
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
140

Otherwise Unclassified Properties

Base Metal Price, % relative 10
12
Density, g/cm3 7.8
2.6
Embodied Carbon, kg CO2/kg material 2.4
8.2
Embodied Energy, MJ/kg 34
150
Embodied Water, L/kg 110
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 150
12
Resilience: Unit (Modulus of Resilience), kJ/m3 870 to 2100
520
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
53
Strength to Weight: Axial, points 27 to 36
38
Strength to Weight: Bending, points 23 to 28
43
Thermal Diffusivity, mm2/s 6.7
68
Thermal Shock Resistance, points 27 to 36
17

Alloy Composition

Aluminum (Al), % 0
90.8 to 93
Beryllium (Be), % 0
0.040 to 0.070
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 12 to 14
0
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 78.5 to 84.2
0 to 0.2
Magnesium (Mg), % 0
0.4 to 0.7
Manganese (Mn), % 0 to 1.5
0 to 0.1
Molybdenum (Mo), % 0.3 to 0.7
0
Nickel (Ni), % 3.5 to 4.5
0
Nitrogen (N), % 0 to 0.020
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.7
6.5 to 7.5
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
0.040 to 0.2
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15