EN 1.4313 Stainless Steel vs. EN 1.1221 Steel
Both EN 1.4313 stainless steel and EN 1.1221 steel are iron alloys. They have 83% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.
For each property being compared, the top bar is EN 1.4313 stainless steel and the bottom bar is EN 1.1221 steel.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 200 | |
190 |
Elongation at Break, % | 12 to 17 | |
10 to 21 |
Fatigue Strength, MPa | 340 to 510 | |
240 to 340 |
Poisson's Ratio | 0.28 | |
0.29 |
Shear Modulus, GPa | 76 | |
72 |
Shear Strength, MPa | 460 to 600 | |
450 to 520 |
Tensile Strength: Ultimate (UTS), MPa | 750 to 1000 | |
730 to 870 |
Tensile Strength: Yield (Proof), MPa | 580 to 910 | |
390 to 550 |
Thermal Properties
Latent Heat of Fusion, J/g | 280 | |
250 |
Maximum Temperature: Mechanical, °C | 780 | |
400 |
Melting Completion (Liquidus), °C | 1450 | |
1460 |
Melting Onset (Solidus), °C | 1400 | |
1410 |
Specific Heat Capacity, J/kg-K | 480 | |
470 |
Thermal Conductivity, W/m-K | 25 | |
48 |
Thermal Expansion, µm/m-K | 10 | |
12 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 2.9 | |
7.2 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 3.3 | |
8.3 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 10 | |
2.1 |
Density, g/cm3 | 7.8 | |
7.8 |
Embodied Carbon, kg CO2/kg material | 2.4 | |
1.5 |
Embodied Energy, MJ/kg | 34 | |
19 |
Embodied Water, L/kg | 110 | |
47 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 110 to 150 | |
67 to 130 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 870 to 2100 | |
410 to 800 |
Stiffness to Weight: Axial, points | 14 | |
13 |
Stiffness to Weight: Bending, points | 25 | |
24 |
Strength to Weight: Axial, points | 27 to 36 | |
26 to 31 |
Strength to Weight: Bending, points | 23 to 28 | |
23 to 26 |
Thermal Diffusivity, mm2/s | 6.7 | |
13 |
Thermal Shock Resistance, points | 27 to 36 | |
23 to 28 |
Alloy Composition
Carbon (C), % | 0 to 0.050 | |
0.57 to 0.65 |
Chromium (Cr), % | 12 to 14 | |
0 to 0.4 |
Iron (Fe), % | 78.5 to 84.2 | |
97.1 to 98.8 |
Manganese (Mn), % | 0 to 1.5 | |
0.6 to 0.9 |
Molybdenum (Mo), % | 0.3 to 0.7 | |
0 to 0.1 |
Nickel (Ni), % | 3.5 to 4.5 | |
0 to 0.4 |
Nitrogen (N), % | 0 to 0.020 | |
0 |
Phosphorus (P), % | 0 to 0.040 | |
0 to 0.035 |
Silicon (Si), % | 0 to 0.7 | |
0 to 0.4 |
Sulfur (S), % | 0 to 0.015 | |
0 to 0.035 |