MakeItFrom.com
Menu (ESC)

EN 1.4313 Stainless Steel vs. EN AC-42000 Aluminum

EN 1.4313 stainless steel belongs to the iron alloys classification, while EN AC-42000 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4313 stainless steel and the bottom bar is EN AC-42000 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 12 to 17
1.1 to 2.4
Fatigue Strength, MPa 340 to 510
67 to 76
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
26
Tensile Strength: Ultimate (UTS), MPa 750 to 1000
170 to 270
Tensile Strength: Yield (Proof), MPa 580 to 910
95 to 230

Thermal Properties

Latent Heat of Fusion, J/g 280
500
Maximum Temperature: Mechanical, °C 780
170
Melting Completion (Liquidus), °C 1450
610
Melting Onset (Solidus), °C 1400
600
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 25
160
Thermal Expansion, µm/m-K 10
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
38
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
130

Otherwise Unclassified Properties

Base Metal Price, % relative 10
9.5
Density, g/cm3 7.8
2.6
Embodied Carbon, kg CO2/kg material 2.4
8.0
Embodied Energy, MJ/kg 34
150
Embodied Water, L/kg 110
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 150
2.8 to 5.7
Resilience: Unit (Modulus of Resilience), kJ/m3 870 to 2100
64 to 370
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
53
Strength to Weight: Axial, points 27 to 36
18 to 28
Strength to Weight: Bending, points 23 to 28
26 to 35
Thermal Diffusivity, mm2/s 6.7
66
Thermal Shock Resistance, points 27 to 36
7.9 to 12

Alloy Composition

Aluminum (Al), % 0
89.9 to 93.3
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 12 to 14
0
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 78.5 to 84.2
0 to 0.55
Lead (Pb), % 0
0 to 0.15
Magnesium (Mg), % 0
0.2 to 0.65
Manganese (Mn), % 0 to 1.5
0 to 0.35
Molybdenum (Mo), % 0.3 to 0.7
0
Nickel (Ni), % 3.5 to 4.5
0 to 0.15
Nitrogen (N), % 0 to 0.020
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.7
6.5 to 7.5
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 0.15
Residuals, % 0
0 to 0.15