MakeItFrom.com
Menu (ESC)

EN 1.4313 Stainless Steel vs. Grade 32 Titanium

EN 1.4313 stainless steel belongs to the iron alloys classification, while grade 32 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4313 stainless steel and the bottom bar is grade 32 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 12 to 17
11
Fatigue Strength, MPa 340 to 510
390
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 76
40
Shear Strength, MPa 460 to 600
460
Tensile Strength: Ultimate (UTS), MPa 750 to 1000
770
Tensile Strength: Yield (Proof), MPa 580 to 910
670

Thermal Properties

Latent Heat of Fusion, J/g 280
410
Maximum Temperature: Mechanical, °C 780
310
Melting Completion (Liquidus), °C 1450
1610
Melting Onset (Solidus), °C 1400
1560
Specific Heat Capacity, J/kg-K 480
550
Thermal Conductivity, W/m-K 25
7.5
Thermal Expansion, µm/m-K 10
8.2

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 10
38
Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 2.4
32
Embodied Energy, MJ/kg 34
530
Embodied Water, L/kg 110
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 150
83
Resilience: Unit (Modulus of Resilience), kJ/m3 870 to 2100
2100
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 27 to 36
47
Strength to Weight: Bending, points 23 to 28
41
Thermal Diffusivity, mm2/s 6.7
3.0
Thermal Shock Resistance, points 27 to 36
63

Alloy Composition

Aluminum (Al), % 0
4.5 to 5.5
Carbon (C), % 0 to 0.050
0 to 0.080
Chromium (Cr), % 12 to 14
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 78.5 to 84.2
0 to 0.25
Manganese (Mn), % 0 to 1.5
0
Molybdenum (Mo), % 0.3 to 0.7
0.6 to 1.2
Nickel (Ni), % 3.5 to 4.5
0
Nitrogen (N), % 0 to 0.020
0 to 0.030
Oxygen (O), % 0
0 to 0.11
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.7
0.060 to 0.14
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0.6 to 1.4
Titanium (Ti), % 0
88.1 to 93
Vanadium (V), % 0
0.6 to 1.4
Zirconium (Zr), % 0
0.6 to 1.4
Residuals, % 0
0 to 0.4