MakeItFrom.com
Menu (ESC)

EN 1.4313 Stainless Steel vs. C19100 Copper

EN 1.4313 stainless steel belongs to the iron alloys classification, while C19100 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4313 stainless steel and the bottom bar is C19100 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 12 to 17
17 to 37
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
43
Shear Strength, MPa 460 to 600
170 to 330
Tensile Strength: Ultimate (UTS), MPa 750 to 1000
250 to 630
Tensile Strength: Yield (Proof), MPa 580 to 910
75 to 550

Thermal Properties

Latent Heat of Fusion, J/g 280
210
Maximum Temperature: Mechanical, °C 780
200
Melting Completion (Liquidus), °C 1450
1080
Melting Onset (Solidus), °C 1400
1040
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 25
250
Thermal Expansion, µm/m-K 10
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
55
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
56

Otherwise Unclassified Properties

Base Metal Price, % relative 10
33
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 2.4
2.7
Embodied Energy, MJ/kg 34
43
Embodied Water, L/kg 110
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 150
60 to 99
Resilience: Unit (Modulus of Resilience), kJ/m3 870 to 2100
24 to 1310
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 27 to 36
7.7 to 20
Strength to Weight: Bending, points 23 to 28
9.9 to 18
Thermal Diffusivity, mm2/s 6.7
73
Thermal Shock Resistance, points 27 to 36
8.9 to 22

Alloy Composition

Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 12 to 14
0
Copper (Cu), % 0
96.5 to 98.6
Iron (Fe), % 78.5 to 84.2
0 to 0.2
Lead (Pb), % 0
0 to 0.1
Manganese (Mn), % 0 to 1.5
0
Molybdenum (Mo), % 0.3 to 0.7
0
Nickel (Ni), % 3.5 to 4.5
0.9 to 1.3
Nitrogen (N), % 0 to 0.020
0
Phosphorus (P), % 0 to 0.040
0.15 to 0.35
Silicon (Si), % 0 to 0.7
0
Sulfur (S), % 0 to 0.015
0
Tellurium (Te), % 0
0.35 to 0.6
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.5